This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Protein expression profiling to identify global patterns of gene expression is time and labor intensive and generally allows only the 1,000 to 2,000 most abundant proteins to be analyzed unless prefractionation is used. Another approach for monitoring the physiological state of a cell is to query the status of the signal transduction pathways. One exciting way to approach this is to monitor the phosphorylation status of proteins, their sites of phosphorylation, and their changes in phosphorylation level. This has been termed phosphoproteomics by Chait (Oda, et al., 2001) and two general experimental approaches have been developed, the first based on phosphoramidate chemistry (Zhou, et al., 2001) and the second based on various Beta-elimination/Michael addition strategies (Molloy and Andrews, 2001; Oda, et al., 2001; Goshe, et al., 2002). Both require selective tagging of phosphorylated proteins or peptides followed by enrichment and analysis by mass spectrometry. Both approaches are amenable to isotope tagging for quantification. We have developed a single-pot reaction that allows proteins phosphorylated on serine and threonine residues to be selectively tagged (Molloy and Andrews, 2001). This approach relies on selective beta-elimination and Michael addition of the tag and has been used to identify the phosphorylation sites in proteins (Molloy and Andrews, 2001).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018627-04
Application #
7359126
Study Section
Special Emphasis Panel (ZRG1-BECM (40))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
4
Fiscal Year
2006
Total Cost
$189,716
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hagen, Susan E; Liu, Kun; Jin, Yafei et al. (2018) Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry. Org Biomol Chem 16:8245-8248
Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong et al. (2014) RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template. RNA 20:644-55
Zhang, Chunchao; Gao, Shan; Molascon, Anthony J et al. (2014) Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features. J Proteome Res 13:3330-7
Johnson, Cole; Kweon, Hye Kyong; Sheidy, Daniel et al. (2014) The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLoS Genet 10:e1004183
Zhang, Chunchao; Gao, Shan; Molascon, Anthony J et al. (2014) Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 13:749-59
Zhang, Yan; Kweon, Hye Kyong; Shively, Christian et al. (2013) Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 9:e1003077
Simon, E S; Papoulias, P G; Andrews, P C (2013) Selective collision-induced fragmentation of ortho-hydroxybenzyl-aminated lysyl-containing tryptic peptides. Rapid Commun Mass Spectrom 27:1619-30
Zhang, Chunchao; Molascon, Anthony J; Gao, Shan et al. (2013) Quantitative proteomics reveals that the specific methyltransferases Txr1p and Ezl2p differentially affect the mono-, di- and trimethylation states of histone H3 lysine 27 (H3K27). Mol Cell Proteomics 12:1678-88
Gao, Shan; Xiong, Jie; Zhang, Chunchao et al. (2013) Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27:1662-79
Zhang, Chunchao; Liu, Yifan; Andrews, Philip C (2013) Quantification of histone modifications using ยน?N metabolic labeling. Methods 61:236-43

Showing the most recent 10 out of 56 publications