This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator.
Aim 1. A Graph Cut Algorithm For Brain Image Segmentation This project aims to obtain novel algorithms and software for structural brain image segmentation. We will consider both single-modality as well as multi-modality data. The project will result in image segmentation into 3 tissue classes: white matter, gray matter and cerebro-spinal fluid. We will use a graph cut approach, which is popular is computer vision for segmentation tasks.
Aim 2. Bayesian Reconstruction of Parallel MRI Using Graph Cuts This project aims to develop a new algorithmic paradigm for the reconstruction of MR Parallel Imaging (MRPI) data by using recent advances in Computer Science and Graph Theory. Specifically, we will further develop and refine computationally efficient Bayesian methods for MRI that have the potential to overcome fundamental limits of traditional MR imaging Aim 3. A Graph Cut Algorithm For Brain Image Segmentation This subproject in the reconstruction core aims to improve image segmentation. Specifically, the aim is to develop new algorithms based on Graph cuts for completely joint image segmentation, registration and bias field correction

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR023953-03
Application #
8170580
Study Section
Special Emphasis Panel (ZRG1-SBIB-J (40))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$65,618
Indirect Cost
Name
Northern California Institute Research & Education
Department
Type
DUNS #
613338789
City
San Francisco
State
CA
Country
United States
Zip Code
94121
Kuceyeski, A; Shah, S; Dyke, J P et al. (2016) The application of a mathematical model linking structural and functional connectomes in severe brain injury. Neuroimage Clin 11:635-647
Lam, Fan; Liu, Ding; Song, Zhuang et al. (2016) A fast algorithm for denoising magnitude diffusion-weighted images with rank and edge constraints. Magn Reson Med 75:433-40
Pannetier, Nicolas A; Stavrinos, Theano; Ng, Peter et al. (2016) Quantitative framework for prospective motion correction evaluation. Magn Reson Med 75:810-6
Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman et al. (2016) Structural connectome disruption at baseline predicts 6-months post-stroke outcome. Hum Brain Mapp 37:2587-601
Friedman, Eric J; Young, Karl; Tremper, Graham et al. (2015) Directed network motifs in Alzheimer's disease and mild cognitive impairment. PLoS One 10:e0124453
Kuceyeski, Amy; Navi, Babak B; Kamel, Hooman et al. (2015) Exploring the brain's structural connectome: A quantitative stroke lesion-dysfunction mapping study. Hum Brain Mapp 36:2147-60
Ma, Chao; Liang, Zhi-Pei (2015) Design of multidimensional Shinnar-Le Roux radiofrequency pulses. Magn Reson Med 73:633-45
Zhao, Bo; Lu, Wenmiao; Hitchens, T Kevin et al. (2015) Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn Reson Med 74:489-98
Lu, Zhao-Hua; Zhu, Hongtu; Knickmeyer, Rebecca C et al. (2015) Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection. Genet Epidemiol 39:664-77
Raj, Ashish; LoCastro, Eve; Kuceyeski, Amy et al. (2015) Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism in Alzheimer's Disease. Cell Rep :

Showing the most recent 10 out of 120 publications