Our ability to analyze hazardous material in toxic waste sites has improved dramatically in recent years. However, we are very limited in our ability to trace the movement of hazardous materials from Superfund sites through various media or to prioritize and mitigate the hazards involved. Our ability to predict exposure, much less susceptibility or effect, of these materials on humans and their environment is still more limited. This Program consists of eight integrated projects, three research cores, a training core and an administrative and outreach core to address these problems. We will determine the fate and transport of hazardous materials in ground water, surface water, and air as they move from toxic waste sites. Concurrently we will develop sensitive systems for evaluating the exposure and effect of populations to these materials. These biological markers will be based upon immunochemical and other detection systems and based on a fundamental understanding of the toxicological processes involved. The project will emphasize pulmonary, dermal, and reproductive systems in mammals as well as microbial and fish systems in the environment. We also will explore new technologies for thermal and bioremediation of toxic waste and address possible health risks associated with these technologies. Rapid immunochemical analysis will supplement classical technologies for the evaluation of sites, validating models of transport from these sites, as well as determining human susceptibility, exposure and effect. The biomarkers developed in this project will serve as biological dosimeters in epidemiological and ecological studies in this and sister projects. The technologies developed in the project will be tested at field sites and transferred to end users.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004699-09
Application #
2153731
Study Section
Special Emphasis Panel (SRC (G1))
Project Start
1987-09-30
Project End
2000-03-31
Budget Start
1995-04-01
Budget End
1996-03-31
Support Year
9
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of California Davis
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Yamanashi, Haruto; Boeglin, William E; Morisseau, Christophe et al. (2018) Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 59:684-695
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475
Yang, Yang-Ming; Sun, Dong; Kandhi, Sharath et al. (2018) Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 115:613-618
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Cui, Xiping; Vasylieva, Natalia; Shen, Ding et al. (2018) Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 143:2057-2065
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473

Showing the most recent 10 out of 1149 publications