Our ability to analyze hazardous material in toxic waste sites has improved dramatically in recent years. However, we are very limited in our ability to trace the movement of hazardous materials from Superfund sites through various media or to prioritize and mitigate the hazards involved. Our ability to predict exposure, much less susceptibility or effect, of these materials on humans and their environment is still more limited. This Program consists of eight integrated projects, three research cores, a training core and an administrative and outreach core to address these problems. We will determine the fate and transport of hazardous materials in ground water, surface water, and air as they move from toxic waste sites. Concurrently we will develop sensitive systems for evaluating the exposure and effect of populations to these materials. These biological markers will be based upon immunochemical and other detection systems and based on a fundamental understanding of the toxicological processes involved. The project will emphasize pulmonary, dermal, and reproductive systems in mammals as well as microbial and fish systems in the environment. We also will explore new technologies for thermal and bioremediation of toxic waste and address possible health risks associated with these technologies. Rapid immunochemical analysis will supplement classical technologies for the evaluation of sites, validating models of transport from these sites, as well as determining human susceptibility, exposure and effect. The biomarkers developed in this project will serve as biological dosimeters in epidemiological and ecological studies in this and sister projects. The technologies developed in the project will be tested at field sites and transferred to end users.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004699-09
Application #
2153731
Study Section
Special Emphasis Panel (SRC (G1))
Project Start
1987-09-30
Project End
2000-03-31
Budget Start
1995-04-01
Budget End
1996-03-31
Support Year
9
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of California Davis
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Guedes, A G P; Aristizabal, F; Sole, A et al. (2018) Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t-TUCB in horses with experimentally induced radiocarpal synovitis. J Vet Pharmacol Ther 41:230-238
Heikenfeld, J; Jajack, A; Rogers, J et al. (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217-248
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527

Showing the most recent 10 out of 1149 publications