Our ability to analyze hazardous material in toxic waste sites has improved dramatically in recent years. However, we are very limited in our ability to trace the movement of hazardous materials from Superfund sites through various media or to prioritize and mitigate the hazards involved. Our ability to predict exposure, much less susceptibility or effect, of these materials on humans and their environment is still more limited. This Program consists of eight integrated projects, three research cores, a training core and an administrative and outreach core to address these problems. We will determine the fate and transport of hazardous materials in ground water, surface water, and air as they move from toxic waste sites. Concurrently we will develop sensitive systems for evaluating the exposure and effect of populations to these materials. These biological markers will be based upon immunochemical and other detection systems and based on a fundamental understanding of the toxicological processes involved. The project will emphasize pulmonary, dermal, and reproductive systems in mammals as well as microbial and fish systems in the environment. We also will explore new technologies for thermal and bioremediation of toxic waste and address possible health risks associated with these technologies. Rapid immunochemical analysis will supplement classical technologies for the evaluation of sites, validating models of transport from these sites, as well as determining human susceptibility, exposure and effect. The biomarkers developed in this project will serve as biological dosimeters in epidemiological and ecological studies in this and sister projects. The technologies developed in the project will be tested at field sites and transferred to end users.
Showing the most recent 10 out of 1149 publications