Hazardous waste sites contain complex mixtures of a wide variety of toxic chemicals. Unfortunately, development of a rapid and inexpensive detection of specific chemicals or chemical classes in environmental and biological samples has been hampered by the lack of available specific bioassay/biomarker systems. Accordingly, the overall goals of this project are to develop and validate a series of mechanistically-based cell bioassays/biomarkers that have application for chemical detection and screening. Since effective development and application of bioassays/biomarkers is greatly facilitated by an understanding of the specific response of a cell to a given toxicant of class of toxicants, each of the four proposed approaches will exploit information derived from an analysis of the basic molecular mechanisms by which chemicals affect cellular receptors, signal transduction pathways, and cell functions.
In Aim 1, stably transfected cell lines will be developed which respond to one or more hormones (steroid, thyroid and retinoic acid) with the induction of receptor/dependent expression of firefly luciferase or green fluorescent protein receptor genes. The endocrine disrupting activity of a given chemical(s), or complex chemical mixtures could rapidly be determined by examining their ability to activate/inhibit induction of reporter gene expression.
In Aim 2, measurement of perturbations in gene expression by dioxin, arsenic and chromium in human keratinocytes, using subtractive hybridization and DNA array techniques will allow identification of a series of gene products (i.e. potential biomarkers of effect) whose expression is altered by these chemicals.
In Aim 3, validation of soluble epoxide hydrolase (sEH)-generated oxylipin metabolites as relevant biomarkers as relevant biomarkers of exposure/effect resulting from exposure to hazardous environmental chemicals which alter sEH activity will be evaluated using cells and mice. DNA array and metanomics approaches will also be developed and employed for identifying genetic and metabolic biomarkers of exposure to sEH inhibitors.
In Aim 4, a series of transgenic skeletal myotubule cell lines (wild-type and mutant) will be developed as biomarkers of normal and heightened susceptibility to environmental chemicals causing dysfunction in Ca2+-regulation and signaling and as bioassays for the identification of environmental toxicants which influence calcium signaling. Overall, these approaches not only take advantage of the ability of a chemical to activate/inhibit intracellular receptor mediated signaling events and gene expression, but these bioassays and biomarkers provide rapid mechanistically-based screening systems to detect toxicants and toxicant exposure.

Project Start
2000-04-01
Project End
2001-03-31
Budget Start
Budget End
Support Year
14
Fiscal Year
2000
Total Cost
$165,230
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464
Guedes, A G P; Aristizabal, F; Sole, A et al. (2018) Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t-TUCB in horses with experimentally induced radiocarpal synovitis. J Vet Pharmacol Ther 41:230-238
Heikenfeld, J; Jajack, A; Rogers, J et al. (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217-248
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521

Showing the most recent 10 out of 1149 publications