Thermal remediation can be used to treat hazardous wastes found at Superfund sites. These sites can incorporate chlorinated hydrocarbons and heavy toxic metals. The thermal treatment of these materials can release hazardous byproducts into the environment. This project seeks to determine the risk to human populations as a result of a release of chlorinated by-products or metals. The chlorinated compounds of most interest are the dioxins. The impact of the rate of mixing of waste and air on the formation of dioxins will be studied in a wind tunnel experiment. Samples of by-products will be collected for later analysis with the toxicology projects for the presence of dioxins. The focus of the metals will be collected for later analysis with the toxicology projects for the presence of dioxins. The focus of the metals research will be on chromium. Chromium is a non volatile metal that tends to form an ultrafine aerosol in high temperature systems. The hexavalent form of chromium is very toxic; the other valence states are not toxic. Hence, it is important to be able to predict the state of chromium emissions and to design systems to minimize the formation of the hexavalent form. This requires knowledge of the kinetics of chromium oxidation in combustion systems. A low pressure burner will be constructed to undertake experiments in a simple, laminar pre-mixed flame that is seeded with chromium. An on-line time of flight mass spectrometer will provide measurement of chromium intermediates. The results will be used to tune a kinetic model of chromium oxidation for application in the design of practical systems. Collaboration with the University of Colorado Boulder will permit laser induced fluorescence measurements of reactive intermediates to be undertaken. Modeling of the dynamics of the chromium aerosol will also be undertaken to predict the size of the aerosol particles. The toxicity of the particles may change as they age in the atmosphere. Artificial aging in a chamber will be used to simulate the reaction of particles in the atmosphere, on their way to human populations. The toxicity of the aged particles will be studied by analytical chemistry as well as by the various bioassays that are available to use throughout the Superfund program. The toxicity of the aged particles will be assessed in vitro, as well as in vivo with animal exposures to artificially condition combustion generated aerosols.

Project Start
2000-04-01
Project End
2001-03-31
Budget Start
Budget End
Support Year
14
Fiscal Year
2000
Total Cost
$165,230
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Wang, Weicang; Yang, Jun; Zhang, Jianan et al. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283-5288
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Hill 3rd, Thomas; Rice, Robert H (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 46:257-264
Taha, Ameer Y; Hennebelle, Marie; Yang, Jun et al. (2018) Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 138:71-80
Kodani, Sean D; Wan, Debin; Wagner, Karen M et al. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3:14076-14086
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823

Showing the most recent 10 out of 1149 publications