Hazardous waste sites contain complex mixtures of a wide variety of toxic chemicals. Unfortunately, development of rapid and inexpensive detection of specific chemicals or chemical classes in environmental and biological samples has been hampered by the lack of available specific bioassay/biomarker systems. Accordingly, the overall goals of this project are to develop and validate a series of mechanistically-based cell and in vitro bioassays/biomarkers that have application for chemical detection and screening. Since effective development and application of bioassays/biomarkers is greatly facilitated by an understanding of the specific response of a cell to a given toxicant or class of toxicants, each of the four proposed approaches will exploit information derived from an analysis of the basic molecular mechanisms by which selected chemicals affect cellular receptors, signal transduction pathways and cellular/enzyme functions.
In Aim 1, stably transfected cell lines will be developed which respond to dioxin-like chemicals, steroid/thyroid hormones or hormone-like chemicals with the induction or inhibition of receptor-dependent expression of firefly luciferase or green fluorescent protein reporter genes. We will also develop a novel portable in vitro AhR-based bioassay for detection of dioxin-like chemicals.
In Aim 2, human keratinocytes will be used to examine genomic, proteomic and metabolomic effects following exposure to metals/metalloids and chemicals that produce oxidative stress to identify potential biomarkers that are specifically altered by these chemicals.
In Aim 3 in vitro and cell based bioassay systems will be used to examine the influence of superfund chemicals on regulatory lipids that control inflammation and to identify xenobiotics that alter expression and activity of soluble epoxide hydrolase.
Aim 4 proposes to develop and validate ryanodine receptor-based in vitro and intact cell bioassays to identify and characterize non-coplanar halogenated persistent organic pollutants that can affect calcium signaling pathways. In the final Aim, these assay systems will be integrated and optimized and then used in a series of validation studies for the detection and relative quantitation of toxic chemicals present in complex mixtures of chemicals extracted from a variety of matrices. Overall, the proposed studies will not only increase our basic knowledge of the biological and toxicological effects of a variety of Superfund priority chemicals, but the resulting specific bioassays and biomarkers that will be developed will provide rapid mechanistically-based screening systems for the detection of toxicants and toxicant exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004699-19
Application #
6900544
Study Section
Special Emphasis Panel (ZES1-SET-A (S4))
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
19
Fiscal Year
2005
Total Cost
$429,231
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Burmistrov, Vladimir; Morisseau, Christophe; Pitushkin, Dmitry et al. (2018) Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 28:2302-2313
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Tu, Ranran; Armstrong, Jillian; Lee, Kin Sing Stephen et al. (2018) Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 8:5279
Wang, Weicang; Yang, Jun; Zhang, Jianan et al. (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283-5288
Taha, Ameer Y; Hennebelle, Marie; Yang, Jun et al. (2018) Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 138:71-80
Hill 3rd, Thomas; Rice, Robert H (2018) DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate. Toxicol In Vitro 46:257-264
Kodani, Sean D; Wan, Debin; Wagner, Karen M et al. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3:14076-14086
Ren, Qian; Ma, Min; Yang, Jun et al. (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 115:E5815-E5823
Pecic, Stevan; Zeki, Amir A; Xu, Xiaoming et al. (2018) Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostaglandins Other Lipid Mediat 136:90-95
Yamanashi, Haruto; Boeglin, William E; Morisseau, Christophe et al. (2018) Catalytic activities of mammalian epoxide hydrolases with cis and trans fatty acid epoxides relevant to skin barrier function. J Lipid Res 59:684-695

Showing the most recent 10 out of 1149 publications