This project has two purposes. As the statistics and bioinformatics core, the project will provide statistical and database support to other superfund projects. This will typically involve assistance in experimental design, in the analysis and interpretation of data, in the proposal and development of appropriate statistical methods of data analysis, and in the storage and analysis of microarray, mass spectrometry, and NMR spectroscopy data. In addition, this project proposes the development and refinement of statistical methods and algorithms for the analysis of toxics measurement data, gene expression data, proteomics data, and for the creation of new and improved measurement techniques. A particular emphasis is on the development of new statistical methods for design and analysis of experiments using microarrays (including immunoarrays, DNA arrays, and oligonucleotide arrays), mass spectrometry, and NMR spectroscopy, as well as assisting with the bioinformatics needs associated with these data-intensive methods. We will help deal with such problems as background and baseline correction, peak alignment, compound identification, nonlinear calibration, nonconstant variance, outliers, values near or below detection limits, and high-dimensional and large data sets. Many analytical methods can be made more efficient and effective by careful statistical design and analysis of the data. This may be important to human health, since it allows more frequent monitoring of hazardous sites or for human biomarkers of exposure for the same cost, and since it aids in the development and use of analytical techniques to detect toxic substances both clinically and in the field at lower levels and with greater accuracy than existing methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-22
Application #
7597033
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
22
Fiscal Year
2008
Total Cost
$67,050
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Napimoga, M H; Rocha, E P; Trindade-da-Silva, C A et al. (2018) Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 53:743-749
Blöcher, René; Wagner, Karen M; Gopireddy, Raghavender R et al. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61:3541-3550
Hao, Lei; Kearns, Jamie; Scott, Sheyenne et al. (2018) Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 365:467-475
Yang, Yang-Ming; Sun, Dong; Kandhi, Sharath et al. (2018) Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc Natl Acad Sci U S A 115:613-618
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Cui, Xiping; Vasylieva, Natalia; Shen, Ding et al. (2018) Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 143:2057-2065
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464

Showing the most recent 10 out of 1149 publications