The over-arching objectives of this project are to develop and apply biomarker assays for evaluating human reproductive health at the population level. Risk to reproductive health is an area of growing public concern. Initially, this project focuses on the development of biomarker assays that can be applied to non-clinical situations and permit epidemiological studies to include prospective evaluations of individual women's reproductive health. The same biomarker assays validated for use in humans are also validated for use in the nonhuman primate animal model because the species-specific aspects of human reproduction often require the use of the laboratory macaque. These assays are then used to conduct in vivo experiments using the non-human primate animal model to fill important gaps in our understanding of specific environmental toxicants including targets of toxicity and exposure risks. The development of biomarkers for effect has subsequently led to the development and validation of biomarker assays for exposure to reproductive health risks and the identification of new environmental toxicants. All assays are adapted to automated platforms so that they are immediately available for use in all research and clinical centers, in vivo experiments conducted to confirm and characterize newly identified reproductive hazards and in vitro experiments using human cells lines are used to develop a deeper understanding of their mechanism(s) of action. Whenever possible, archival biological samples from previous or concurrent epidemiological studies are used in order to pose population-based queries that otherwise could not be addressed within the budget of a single project. Cooperation and collaboration with other projects is emphasized.

Public Health Relevance

This project addresses the real and potential deleterious effects of environmental hazards on human reproductive health, concentrating on environmental risks to human reproduction and development at the population-based level.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-25
Application #
8252235
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
25
Fiscal Year
2011
Total Cost
$151,102
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464
Guedes, A G P; Aristizabal, F; Sole, A et al. (2018) Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t-TUCB in horses with experimentally induced radiocarpal synovitis. J Vet Pharmacol Ther 41:230-238
Heikenfeld, J; Jajack, A; Rogers, J et al. (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217-248
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768

Showing the most recent 10 out of 1149 publications