PROJECT 2 The proposed project describes a comprehensive research plan to develop and apply automated field- deployable lab-on-a-chip nanosensing platforms with high throughput, sensitivity and efficiency for multi- functional analysis of hazardous substances relevant to health and environmental monitoring in the Superfund Research Center (SRC). As extensive human activities pose increased environmental challenges worldwide, modern environmental monitoring and analytical technologies become particularly important to protect human health from adverse exposure to industrial pollutants, and to considerably improve public awareness. However, conventional laboratory-based analytical instruments are typically expensive and bulky, and require elaborate operational procedures conducted by dedicated personnel. The objective of this work is to deliver field- deployable multipurpose lab-on-a-chip technologies enabled by emerging microfluidics and nanosensing technologies for application in environmental monitoring and human health. Specifically, two innovative technological platforms to be investigated are: 1) a microfluidic print-to-analyze (MPA) system for high- throughput high-sensitivity biomolecular analysis (Aim I), and 2) a field-deployable ELISA-on-a-chip platform to incorporate quantitative nanosensing molecular assays (Aims II-IV), from which a 3D printable device can be customized and interfaced with mobile devices for health and environmental monitoring. Upon development, these technologies are expected to facilitate multiplexed, quantitative, automated processing and analysis of human biospecimens and environmental samples, with high sensitivity, quick turnover at low cost. Initial studies will involve testing these devices to detect pesticides and their degradation products, as an identified high concern for our community partner. More broadly, these platforms will be easily adaptable to commercial biorecognition molecules and detection of numerous Superfund priority chemicals. Overall, this research project directly advances the NIEHS mandate to develop analytical tools for the detection of hazardous chemicals and to apply them to environmental and human health monitoring applications.

Public Health Relevance

PROJECT 2 The proposed project describes a comprehensive research plan to develop and apply automated field- deployable lab-on-a-chip platforms with high throughput, high sensitivity and high efficiency for multifunctional analysis of hazardous substances relevant to human health, environmental monitoring, and the Superfund Research Program stakeholders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-32
Application #
9917786
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290
Zamuruyev, Konstantin O; Borras, Eva; Pettit, Dayna R et al. (2018) Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 1006:49-60
Zamuruyev, Konstantin O; Schmidt, Alexander J; Borras, Eva et al. (2018) Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 12:036020

Showing the most recent 10 out of 1149 publications