The long-term objective of this project is to reduce future human exposure to toxic chemicals through the development and application of thermal techniques for removing, immobilizing, or detoxifying contaminants found in a range of subsurface environments.
The specific aims are: 1. investigate the range and effectiveness of application of steam enhanced extraction to remove volatile contaminants from highly heterogeneous soils and aquifer systems. 2. Examine the effects of temperature on the soil microbial populations and the potential for temperature-enhanced contaminant biodegradation and immobilization rates. 3. Determine the effectiveness of the co-injection of air, oxygen, or carbon dioxide with steam to enhance precipitation, immobilization, and mobilization rates of toxic metals in aqueous or non-aqueous phases.
These aims will met by laboratory, theoretical, an numerical studies which complement other field projects focussed on demonstrations of innovative cleanup technologies at specific sites at Alameda Naval Air Station and elsewhere. Our goals are the generalization of laboratory and site- specific research finding, improvements in the design an operational strategy of thermally enhanced restoration processes, and technology transfer to the restoration industry.

Project Start
Project End
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
11
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
094878337
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Smith, Allan H; Marshall, Guillermo; Roh, Taehyun et al. (2018) Lung, Bladder, and Kidney Cancer Mortality 40?Years After Arsenic Exposure Reduction. J Natl Cancer Inst 110:241-249
Castriota, Felicia; Acevedo, Johanna; Ferreccio, Catterina et al. (2018) Obesity and increased susceptibility to arsenic-related type 2 diabetes in Northern Chile. Environ Res 167:248-254
Rothman, Nathaniel; Zhang, Luoping; Smith, Martyn T et al. (2018) Formaldehyde, Hematotoxicity, and Chromosomal Changes-Response. Cancer Epidemiol Biomarkers Prev 27:120-121
Yik-Sham Chung, Clive; Timblin, Greg A; Saijo, Kaoru et al. (2018) Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 140:6109-6121
Rappaport, Stephen M (2018) Redefining environmental exposure for disease etiology. NPJ Syst Biol Appl 4:30
Tachachartvanich, Phum; Sangsuwan, Rapeepat; Ruiz, Heather S et al. (2018) Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environ Sci Technol 52:1542-1550
Guyton, Kathryn Z; Rieswijk, Linda; Wang, Amy et al. (2018) Key Characteristics Approach to Carcinogenic Hazard Identification. Chem Res Toxicol :
Roh, Taehyun; Steinmaus, Craig; Marshall, Guillermo et al. (2018) Age at Exposure to Arsenic in Water and Mortality 30-40 Years After Exposure Cessation. Am J Epidemiol 187:2297-2305
Daniels, Sarah I; Chambers, John C; Sanchez, Sylvia S et al. (2018) Elevated Levels of Organochlorine Pesticides in South Asian Immigrants Are Associated With an Increased Risk of Diabetes. J Endocr Soc 2:832-841
Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A et al. (2018) Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 39:614-622

Showing the most recent 10 out of 629 publications