Superfund sites have arisen in part because systems were developed for materials processing, energy production, manufacturing, and waste management without sufficient consideration of the health and environmental impacts of byproducts or waste from processes or product use and disposal. Combustion systems are used for the treatment and destruction of wastes, and dominate the production of energy and materials. In all these applications, they have the potential to produce air pollution and hazardous byproducts. Combustion processes are also the major source of ultrafine particles, especially those smaller than 1 micron. The long-range goals of this project are to improve high-temperature processes, particularly combustion processes, and to provide a means of on-line real time monitoring of air emissions. These efforts can contribute to the reduction of direct and indirect exposures to toxic combustion byproducts, especially to metals, chlorinated hydrocarbons (CHCs), and small particles. In the proposed research, we seek understanding of the processes and mechanisms that result in the evolution of particles and gas-phase seek understanding of the processes and mechanisms that result in the evolution of particles and gas-phase byproducts in high temperature environments. In addition, combustion may be regarded as a model system for applying environmental metrics during the design phase to improve performance and reduce environmental health impacts. One additional dimension of the project will be to extend the application of excimer laser fragmentation-fluorescence spectroscopy (ELFFS) to the measurement of toxic species in soils or solids; this work may provide additional resources to other program projects, which involve the fate and transport of toxic metals and CHCs in the ground.
The specific aims for this project are: 1) Continue development of non- intrusive monitoring techniques (such as ELFFS and in situ Fourier transform infrared (FTIR) spectroscopy) for application to metals and other hazardous species produced in flames or in the post-flame environment. 2) Study the behavior of metals and metal species in flames and in the post-flame environment with the goal of identifying conditions that produce specific metal compounds and particles. 3) Expand our studies of the chemistry and interactions of chlorinate hydrocarbons to mixtures where chlorine, metals, and oxygenates are present. 4) Use the information generated in aims #2 and #3 combined with toxicity metrics to explore possible design and control strategies to reduce the amount and toxicity of species emitted to the environment when high temperature systems are utilized. 5) Extend our laser diagnostic methods to the detection of metals and metal compounds in solids and soils.

Project Start
2002-08-06
Project End
2003-03-31
Budget Start
Budget End
Support Year
16
Fiscal Year
2002
Total Cost
$293,470
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
094878337
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Barazesh, James M; Prasse, Carsten; Wenk, Jannis et al. (2018) Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis. Environ Sci Technol 52:195-204
Counihan, Jessica L; Wiggenhorn, Amanda L; Anderson, Kimberly E et al. (2018) Chemoproteomics-Enabled Covalent Ligand Screening Reveals ALDH3A1 as a Lung Cancer Therapy Target. ACS Chem Biol 13:1970-1977
Lavy, Adi; Keren, Ray; Yu, Ke et al. (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20:800-814
Perttula, Kelsi; Schiffman, Courtney; Edmands, William M B et al. (2018) Untargeted lipidomic features associated with colorectal cancer in a prospective cohort. BMC Cancer 18:996
Edmands, William M B; Hayes, Josie; Rappaport, Stephen M (2018) SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis. Bioinformatics 34:3589-3590
McHale, Cliona M; Osborne, Gwendolyn; Morello-Frosch, Rachel et al. (2018) Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat Res 775:11-20
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427
Wiemels, Joseph L; Walsh, Kyle M; de Smith, Adam J et al. (2018) GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 9:286
Prasse, Carsten; Ford, Breanna; Nomura, Daniel K et al. (2018) Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc Natl Acad Sci U S A 115:2311-2316

Showing the most recent 10 out of 629 publications