There remains a compelling need forimproved ways to detect and quantify toxic and/or hazardous chemical species found at existing orpotential Superfund sites. Better analytical techniques could reduce the cost of monitoring, help improveremediation methods, and more accurately assess the health risks associated with hazardous and toxicspecies. We have developed methods to produce novel nanoparticles, arrays, and structures that could beused for chemical analysis, and propose here several approaches that combine evolving methods with thecharacterization and monitoring needs of Superfund. They are linked by their use of small scale propertiesto develop new methods that should be faster, easier, smaller, and/or less expensive. The technologies onwhich we will focus could ultimately lead to a number of nanometer-based devices which are portable androbust, and which can be employed at commercial facilities or in-the-field for environmental monitoring.
Our specific aims are to : 1. Develop low-cost sensors and sensor arrays for measuring chemical species suchas arsenic and mercury using nanoparticle properties that can be probed optically and electronically. 2.Develop methods to identify biomolecules (specific antibodies/antigens used in bioremediation) by probingtheir unique local electronic structure using electron tunneling. 3. Investigate the use of new manufacturednanostructured materials for molecular detection, including structures such as carbon nanotubes andcoated nanoparticles.
The aims are divided into four tasks: Gas Phase Detection of Heavy Metals UsingNanoparticle Complexes with Laser Fragmentation Spectroscopy, Mercury Detection with GoldNanoparticles, Surface Enhanced Raman Spectroscopy Detection of Arsenic Species, and the Detection ofBioremediation Organisms using Electronic Cell Typing.This project will investigate using the different and sometimes unique behavior of materials as their sizeshrink below 100 nm to develop new methods to detect chemical and biological species found at existing orpotential Superfund sites. New sensors could reduce the cost of monitoring, help improve remediationmethods, and more accurately assess the health risks associated with hazardous and toxic species.
Showing the most recent 10 out of 629 publications