There remains a compelling need for improved ways to detect and quantify toxic and/or hazardous chemical species found at existing or potential Superfund sites. Better analytical techniques could reduce the cost of monitoring, help improve remediation methods, and more accurately assess the health risks associated with hazardous and toxic species. We have developed methods to produce novel nanoparticles, arrays, and structures that could be used for chemical analysis, and propose here several approaches that combine evolving methods with the characterization and monitoring needs of Superfund. They are linked by their use of small scale properties to develop new methods that should be faster, easier, smaller, and/or less expensive. The technologies on which we will focus could ultimately lead to a number of nanometer-based devices which are portable and robust, and which can be employed at commercial facilities or in-the-field for environmental monitoring.
Our specific aims are to : 1. Develop low-cost sensors and sensor arrays for measuring chemical species such as arsenic and mercury using nanoparticle properties that can be probed optically and electronically. 2. Develop methods to identify biomolecules (specific antibodies/antigens used in bioremediation) by probing their unique local electronic structure using electron tunneling. 3. Investigate the use of new manufactured nanostructured materials for molecular detection, including structures such as carbon nanotubes and coated nanoparticles.
The aims are divided into four tasks: Gas Phase Detection of Heavy Metals Using Nanoparticle Complexes with Laser Fragmentation Spectroscopy, Mercury Detection with Gold Nanoparticles, Surface Enhanced Raman Spectroscopy Detection of Arsenic Species, and the Detection of Bioremediation Organisms using Electronic Cell Typing. This project will investigate using the different and sometimes unique behavior of materials as their size shrink below 100 nm to develop new methods to detect chemical and biological species found at existing or potential Superfund sites. New sensors could reduce the cost of monitoring, help improve remediation methods, and more accurately assess the health risks associated with hazardous and toxic species.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
United States
Zip Code
Barazesh, James M; Prasse, Carsten; Wenk, Jannis et al. (2018) Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis. Environ Sci Technol 52:195-204
Counihan, Jessica L; Wiggenhorn, Amanda L; Anderson, Kimberly E et al. (2018) Chemoproteomics-Enabled Covalent Ligand Screening Reveals ALDH3A1 as a Lung Cancer Therapy Target. ACS Chem Biol 13:1970-1977
Lavy, Adi; Keren, Ray; Yu, Ke et al. (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20:800-814
Perttula, Kelsi; Schiffman, Courtney; Edmands, William M B et al. (2018) Untargeted lipidomic features associated with colorectal cancer in a prospective cohort. BMC Cancer 18:996
Edmands, William M B; Hayes, Josie; Rappaport, Stephen M (2018) SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis. Bioinformatics 34:3589-3590
McHale, Cliona M; Osborne, Gwendolyn; Morello-Frosch, Rachel et al. (2018) Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat Res 775:11-20
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427
Wiemels, Joseph L; Walsh, Kyle M; de Smith, Adam J et al. (2018) GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 9:286
Prasse, Carsten; Ford, Breanna; Nomura, Daniel K et al. (2018) Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc Natl Acad Sci U S A 115:2311-2316

Showing the most recent 10 out of 629 publications