The support provided under Core D reflect a growing trend in studies of environmental exposure from more traditional epidemiological studies and simple experimental designs to high-dimensional biology, with its emphasis on 'omic'technologies and complicated questions addressing the possible interaction of environmental exposures and high-dimensional measures of the genome, proteome, etc. These high-dimensional data sets are characterized by many (thousands) of measurements made on only a few independent units (e.g., people). Thus, the Core D reflects a parallel evolution in the field of biostatistics towards developing methodologies that can both find patterns in high dimensional data sets as well as providing proper statistical inference for these patterns. Besides offering consulting on traditional epidemiological experimental design and analysis questions, Core D will focus its efforts on providing the most relevant and rigorous statistical techniques to the Program's projects. With new 'omic' technologies, biology has entered a new more empirical phase where the goals of the research are ambitious (e.g., discovery of regulatory gene networks affected by particular environmental toxicants), but the sample sizes relatively small (biological replicates numbering in the tens). With these technologies, have come also a proliferation of proposed methods to find biologically meaningful patterns and typically little theory is provided to guide their relative worth. The goal of this Core is to provide the project researchers with the best techniques available, software to help implement them, a computational environment that can handle computer-intensive methods on large data sets and, most importantly, rigorous statistical inference for the parameters estimated by these procedures. A subset of the developments related to the proliferation of high-dimensional biological/epidemiological data particularly relevant to this proposal are 1) multiple testing, 2) machine-learning and loss-based estimation, 3) grouping algorithms methods, 4) causal inference and 5) biological metadata and systems biology. In addition, the Core will provide access to a computational environment that lends itself to the computationally intensive methods developed for data mining and re-sampling based inference.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004705-23
Application #
8063139
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
23
Fiscal Year
2010
Total Cost
$238,697
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427
Wiemels, Joseph L; Walsh, Kyle M; de Smith, Adam J et al. (2018) GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 9:286
Prasse, Carsten; Ford, Breanna; Nomura, Daniel K et al. (2018) Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc Natl Acad Sci U S A 115:2311-2316
Smith, Allan H; Marshall, Guillermo; Roh, Taehyun et al. (2018) Lung, Bladder, and Kidney Cancer Mortality 40?Years After Arsenic Exposure Reduction. J Natl Cancer Inst 110:241-249
Castriota, Felicia; Acevedo, Johanna; Ferreccio, Catterina et al. (2018) Obesity and increased susceptibility to arsenic-related type 2 diabetes in Northern Chile. Environ Res 167:248-254
Rothman, Nathaniel; Zhang, Luoping; Smith, Martyn T et al. (2018) Formaldehyde, Hematotoxicity, and Chromosomal Changes-Response. Cancer Epidemiol Biomarkers Prev 27:120-121
Yik-Sham Chung, Clive; Timblin, Greg A; Saijo, Kaoru et al. (2018) Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 140:6109-6121
Rappaport, Stephen M (2018) Redefining environmental exposure for disease etiology. NPJ Syst Biol Appl 4:30
Tachachartvanich, Phum; Sangsuwan, Rapeepat; Ruiz, Heather S et al. (2018) Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environ Sci Technol 52:1542-1550

Showing the most recent 10 out of 629 publications