Core C: Genomics and Analytical Chemistry. Core C comprises the combined expertise of Drs. Christine Skibola and Evan Williams, the two co-leaders ofthe Core, who have broad experience in the application of cutting-edge technologies to support Projects 1-6 ofthe Berkeley Superfund Research Program (SRP). The overall goals of the SRP are to use 'omic'technologies and modern analytical methods to develop biological markers for application in human studies and site remediation to allow better detection and remediation of Superfund priority chemicals and emerging contaminants in the environment;and to better evaluate the risk they pose to human health. Core C is set up specifically for the purposes of providing the laboratory infrastructure and expertise for Projects 1-6 to achieve these goals. To meet many of the Aims of Projects 1- 4 and ensure their success, investigators require access, know-how and technical support to apply cuttingedge technologies such as functional genomics, transcriptomics, proteomics, genetics and epigenetics. Project 3 is an epidemiological study that requires effective handling and management of biological samples so that these technologies can be applied. To accomplish these goals, detailed collection and storage protocols have been designed and the Core will provicie facilities for the genetic and proteomic studies that will be conducted in Projects 1-4. Projects 3 and 5 will also require sophisticated mass spectrometry analyses that will be provided by the QB3/Chemistry Mass Spectrometry Facility. The Core will also provide support for high-throughput analysis of toxic metabolites for Project 6 through the Berkeley Screening Center.
The specific aims of Core C are to: 1) process, maintain and store biological samples and cell lines; 2) provide facilities and methodologies for gene expression and epigenetic studies;3) provide analytical support for proteomic studies, for the identification of proteins and organic and inorganic compounds through our QBS/Chemistry Mass Spectrometry Facility, and toxicity screening support;4) provide facilities and methodologies to analyze genetic polymorphisms;and, 5) provide sequencing capabilities at our QB3 DNA sequencing facility. The Core will provide expertise and analytical support in all required areas that, along with the computational biology skills of Core D, will allow for the successful completion of Projects 1-6 of the Berkeley SRP.

Public Health Relevance

The Genomics and Analytical Chemistry Core will provide a centralized source of specialized facilities and equipment, services, well-tested collection and storage protocols, and expert technical support using the latest -omics technologies and analytical instruments for Berkeley Superfund Research Program project investigators. These services will greatly enhance the success of Projects 1-6 investigators to achieve their overall goals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004705-27
Application #
8659381
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
27
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A et al. (2018) Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 39:614-622
Grigoryan, Hasmik; Edmands, William M B; Lan, Qing et al. (2018) Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis 39:661-668
Barazesh, James M; Prasse, Carsten; Wenk, Jannis et al. (2018) Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis. Environ Sci Technol 52:195-204
Counihan, Jessica L; Wiggenhorn, Amanda L; Anderson, Kimberly E et al. (2018) Chemoproteomics-Enabled Covalent Ligand Screening Reveals ALDH3A1 as a Lung Cancer Therapy Target. ACS Chem Biol 13:1970-1977
Lavy, Adi; Keren, Ray; Yu, Ke et al. (2018) A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 20:800-814
Perttula, Kelsi; Schiffman, Courtney; Edmands, William M B et al. (2018) Untargeted lipidomic features associated with colorectal cancer in a prospective cohort. BMC Cancer 18:996
Edmands, William M B; Hayes, Josie; Rappaport, Stephen M (2018) SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis. Bioinformatics 34:3589-3590
McHale, Cliona M; Osborne, Gwendolyn; Morello-Frosch, Rachel et al. (2018) Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat Res 775:11-20
Bruton, Thomas A; Sedlak, David L (2018) Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 206:457-464
Schiffman, Courtney; McHale, Cliona M; Hubbard, Alan E et al. (2018) Identification of gene expression predictors of occupational benzene exposure. PLoS One 13:e0205427

Showing the most recent 10 out of 629 publications