Many environments are exposed to polycyclic aromatic hydrocarbons (PAHs) and N-heterocyclic aromatics (NHAs) as complex mixtures. Specifically, 3000 former sites of coal gasification plants constitute major health hazards. The research will build upon the progress made in a) the isolation of soil microorganisms and consortia of microorganisms that degrade polyaromatic compounds and mixtures thereof, b) the characterization of the metabolic intermediates that are produced by known cultures, new isolates and consortia c) the effects of soil constituents on the bioavailability and sorption of these compounds, and d) the genotoxic effects of these compounds. This proposal targets the recalcitrant, carcinogenic 4 and 5 ring polycyclic hydrocarbons (PAHs) and the equally important N-heterocyclic aromatics (NHA). Our overall objective is to determine and enhance the microbial degradation rates of polyaromatics under simulated environmental conditions and to decrease potential health hazards associated with the PAH and NHA biodegradation products. The goal is to improve upon biodegradation and mineralization for the elimination of polyaromatic compounds and their metabolites from polluted soils.
The specific aims : 1) Isolate organisms that degrade the multi-ring PAHs and NHAs from gasification sites under study using analog enrichment techniques. Compounds include further studies with BaP, benz(a)anthracene, dibenzo(c,g)carbazole, dibenz(a,j)acridine and new initiatives with chrysene and four ring acridine and carbazole derivatives. 2) Use isolated degraders of 2, 3 and 4 ring compounds singly, in mixtures as well as in contaminated soils. Metabolic intermediates, ring cleavage and reaction sequences will be investigated using both isolates and pure cultures. Studies using algae and bacteria in a cometabolic fashion to degrade large ring PAHs will also be undertaken. 3) Determine the impact of carcinogenic metals on the biodegradation of PAHs by isolated 2, 3 and 4 ring degraders. 4) Determine the extent that 2, 3, and 4 ring degrader isolates further degrade stable biodegradation products, and photooxidized products, of PAH/NHA in incubations that mimic preexposure conditions. 5) Test for the capacity of stable intermediates of biodegradation and photooxidation to induce cytogenic damage in proliferating human lymphocytes as measured by induction of micronuclei. 6) Examine the health benefit of biodegradation. This will involve determining the mutagenic activities of soil organic extracts before and after reintroduction of PAH metabolite mixtures and individual degradation products. With an understanding of the microbial hydrocarbon degradation process, strategies will be developed for utilizing microbial hydrocarbon degrading activities for the removal of toxic and carcinogenic PAHs and NHAs and their intermediates from contaminated ecosystems.

Project Start
1999-04-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
11
Fiscal Year
2000
Total Cost
$171,067
Indirect Cost
Name
University of Cincinnati
Department
Type
DUNS #
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
McNear Jr, David H; Afton, Scott E; Caruso, Joseph A (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267-76
Welsh, Gwendolyn L; Mueller, Kevin E; Soman, Rajiv S et al. (2009) Accessibility of polybrominated diphenyl ether congeners in aging soil. J Environ Monit 11:1658-63
Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George et al. (2009) The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. Environ Pollut 157:95-101
Afton, Scott E; Catron, Brittany; Caruso, Joseph A (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J Exp Bot 60:1289-97
Chen, Liang; Ovesen, Jerald L; Puga, Alvaro et al. (2009) Distinct contributions of JNK and p38 to chromium cytotoxicity and inhibition of murine embryonic stem cell differentiation. Environ Health Perspect 117:1124-30
Ellis, Jenny; Grimm, Rudolf; Clark, Joseph F et al. (2008) Studying protein phosphorylation in low MW CSF fractions with capLC-ICPMS and nanoLC-CHIP-ITMS for identification of phosphoproteins. J Proteome Res 7:4736-42
Afton, Scott; Kubachka, Kevin; Catron, Brittany et al. (2008) Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection applications to river water, plant extract an J Chromatogr A 1208:156-63
Kubachka, Kevin M; Richardson, Douglas D; Heitkemper, Douglas T et al. (2008) Detection of chemical warfare agent degradation products in foods using liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. J Chromatogr A 1202:124-31
Seo, Youngwoo; Bishop, Paul L (2008) The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance. Chemosphere 70:480-8
Richardson, Douglas D; Caruso, Joseph A (2007) Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection. Anal Bioanal Chem 388:809-23

Showing the most recent 10 out of 140 publications