(Taken from application) The objectives of this research project are, (1) to evaluate the effects of mixtures of benzo[a]pyrene (B[a]P), a prototypical polycyclic aromatic hydrocarbon (PAH), and the carcinogenic metals chromium or arsenic on the expression of Phase I and Phase II detoxification genes, and (2) to elucidate the molecular mechanisms responsible for these effects. Development of environmental policy relies on risk information about the chemicals to which individuals are exposed. Although mechanisms are in place to test the health effects of individual chemicals, there is little data on the toxicity of complex environmental mixtures. In the absence of specific data, default assumptions must be used when conducting risk assessment for mixtures. For example, in the absence of evidence to the contrary, two chemicals having similar toxic effects are assumed to act in an additive manner. This approach is not satisfactory for many complex mixtures in which a wide spectrum of interactions, from repression of effects to synergy, may be observed. Since most individuals are exposed to complex mixtures of environmental contaminants, methods for assessing the risk of these exposures need to be developed. Most if not all the toxic effects of PAH exposure are mediated by the aromatic hydrocarbon (Ah) receptor, a ligand-activated transcription factor that, in combination with the Ah receptor nuclear translocator, is responsible for the transcriptional activation of phase I detoxification genes, such as those coding for the cytochromes P450 monooxygenases CYP1A1, CYP1B1 and CYP1A2, and of phase II detoxification genes, such as those coding for quinone oxido-reductase (NQO1), glutathione-S-transferase (GST1) and UDP-glucuronosyl transferase (UDPGT). Preliminary work from our laboratory has shown that exposure of cultured mammalian cells to chromate or arsenite disrupts the coordinate induction of phase I and phase II genes by Ah receptor ligands. Chromate inhibits induction of phase II genes to a greater extent than induction of phase I genes, whereas arsenite has little effect on phase I gene induction but superinduces phase II genes. These observations have lead us to the hypothesis that combined exposure to a mixture of B[a]P and chromate or arsenite, (1) disrupts the regulatory mechanisms that control transcription from B[a]P-inducible gene promoters; (2) causes an uncoupling of phase I and phase II gene expression and a concomitant imbalance in B[a]P metabolism; and (3) produces a characteristic """"""""gene expression signature"""""""" that can be used as a molecular biomarker of exposure and of the health effects of the mixture. Results from this work will help develop a means to predict the health risks arising from exposure to chemical mixtures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004908-13
Application #
6578778
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
13
Fiscal Year
2002
Total Cost
$171,067
Indirect Cost
Name
University of Cincinnati
Department
Type
DUNS #
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
McNear Jr, David H; Afton, Scott E; Caruso, Joseph A (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267-76
Welsh, Gwendolyn L; Mueller, Kevin E; Soman, Rajiv S et al. (2009) Accessibility of polybrominated diphenyl ether congeners in aging soil. J Environ Monit 11:1658-63
Seo, Youngwoo; Lee, Woo-Hyung; Sorial, George et al. (2009) The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. Environ Pollut 157:95-101
Afton, Scott E; Catron, Brittany; Caruso, Joseph A (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J Exp Bot 60:1289-97
Chen, Liang; Ovesen, Jerald L; Puga, Alvaro et al. (2009) Distinct contributions of JNK and p38 to chromium cytotoxicity and inhibition of murine embryonic stem cell differentiation. Environ Health Perspect 117:1124-30
Afton, Scott; Kubachka, Kevin; Catron, Brittany et al. (2008) Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection applications to river water, plant extract an J Chromatogr A 1208:156-63
Kubachka, Kevin M; Richardson, Douglas D; Heitkemper, Douglas T et al. (2008) Detection of chemical warfare agent degradation products in foods using liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. J Chromatogr A 1202:124-31
Seo, Youngwoo; Bishop, Paul L (2008) The monitoring of biofilm formation in a mulch biowall barrier and its effect on performance. Chemosphere 70:480-8
Ellis, Jenny; Grimm, Rudolf; Clark, Joseph F et al. (2008) Studying protein phosphorylation in low MW CSF fractions with capLC-ICPMS and nanoLC-CHIP-ITMS for identification of phosphoproteins. J Proteome Res 7:4736-42
Seo, Youngwoo; Bishop, Paul L (2007) Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environ Sci Technol 41:7107-13

Showing the most recent 10 out of 140 publications