Reproduction and development are highly integrated, hormonally dependent processes that can be acutely sensitive to chemical insult. Several halogenated polycyclic aromatic hydrocarbons, which are common Superfund contaminants, exhibit agonist as well as antagonist hormonal activity and are therefore potential reproductive and developmental toxicants. This project is composed of three subprojects. Each subproject has a different approach to the study of reproductive toxicity, yet the subprojects share the overall objectives of (1) characterizing the effects of selected halogenated polycyclic aromatic hydrocarbons on reproduction and development, (2) investigating the mechanisms that initiate and mediate the chemical-induced alterations in reproduction and development, (3) assessing possible health risks arising from exposure to these chemicals. This subproject will focus on the process of parturition, investigating the potential role of PCBs in prematurity, post-maturity and dystocia (difficult labor). The proposed research will test the hypothesis that PCBs modulate uterine contraction in a direct and congener-specific manner, and that these PCBs thereby also have the potential to alter parturition. PCBs will first be assessed for effects on contraction of isolated uterine strips followed by in vivo experiments to determine if the PCB modifies parturition. Additionally, the mechanism(s) of action of the PCBs will be examined. It is hypothesized that direct actions of PCBs on uterine contraction are due to mechanisms involving steroidogenic action, gap junctional communication, calcium homeostasis, and/or glutathione status, possibly in an interactive manner.

Project Start
1998-04-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
10
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Nault, Rance; Doskey, Claire M; Fader, Kelly A et al. (2018) Comparison of Hepatic NRF2 and Aryl Hydrocarbon Receptor Binding in 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Treated Mice Demonstrates NRF2-Independent PKM2 Induction. Mol Pharmacol 94:876-884
Dornbos, Peter; LaPres, John J (2018) Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 395:1-8
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Interfacial Structure and Interaction of Kaolinite Intercalated with N-methylformamide Insight from Molecular Dynamics Modeling. Appl Clay Sci 158:204-210
Fader, Kelly A; Nault, Rance; Raehtz, Sandi et al. (2018) 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 348:85-98
Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei et al. (2018) Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations. Appl Clay Sci 151:46-53
Zhang, Qiang; Li, Jin; Middleton, Alistair et al. (2018) Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 6:261
Fader, K A; Nault, R; Kirby, M P et al. (2018) Corrigendum to ""Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERB?/? activation in aryl hydrocarbon receptor-elicited hepatotoxicity"" [Toxicol. Appl. Pharmacol. 321 (2017) 1-17]. Toxicol Appl Pharmacol 344:74
Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan et al. (2018) gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. G3 (Bethesda) 8:2559-2562
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction. J Phys Chem C Nanomater Interfaces 122:3341-3349
Phadnis-Moghe, Ashwini S; Kaminski, Norbert E (2017) Immunotoxicity testing using human primary leukocytes: An adjunct approach for the evaluation of human risk. Curr Opin Toxicol 3:25-29

Showing the most recent 10 out of 417 publications