Biological and chemical remediation technologies offer the advantage of partial or complete degradation of Superfund chemical rather than simple transfer from one compartment to another. The ultimate goal of these technologies is the complete conversion of toxic chemicals to their mineral end products such as CO2 C1- and H20. Frequently however intermediates are produced from the partial transformation of Superfund chemicals. These intermediates may have sufficient stabilities so that they exist in the environment over time frame relevant to risk assessment and regulators. Traditionally, remediation is viewed from the standpoint of parent compound disappearance, and the assumption is that this equates to a cleaner and safer environment. However, stable intermediates produced during remediation, both as individual compounds and as mixtures representing their environmental occurrence. The hypothesis to be tested by the Remediation Product Evaluation Core is that the products of Remediation have different biologic activities compared to the parent compounds or mixtures. The Core will serve to integrate activities of remediation projects with project investigators seeking to understand the biologic activities of Superfund chemicals and their remediation products. Under auspices of the Core, remediation products of PCB and PAH mixtures and of halogenated solvents and metals will be generated and evaluated using an array of assays which measure a variety of biological functions. This will provide the basis of a more accurate assessment of remediation technologies and how to improve them, as well as a more complete understanding of the mechanisms by which Superfund chemicals and their remediation products exert their biological actions.

Project Start
2001-04-01
Project End
2002-03-31
Budget Start
Budget End
Support Year
13
Fiscal Year
2001
Total Cost
$204,127
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan et al. (2018) gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. G3 (Bethesda) 8:2559-2562
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction. J Phys Chem C Nanomater Interfaces 122:3341-3349
Nault, Rance; Doskey, Claire M; Fader, Kelly A et al. (2018) Comparison of Hepatic NRF2 and Aryl Hydrocarbon Receptor Binding in 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Treated Mice Demonstrates NRF2-Independent PKM2 Induction. Mol Pharmacol 94:876-884
Dornbos, Peter; LaPres, John J (2018) Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 395:1-8
Zhang, Shuai; Liu, Qinfu; Gao, Feng et al. (2018) Interfacial Structure and Interaction of Kaolinite Intercalated with N-methylformamide Insight from Molecular Dynamics Modeling. Appl Clay Sci 158:204-210
Fader, Kelly A; Nault, Rance; Raehtz, Sandi et al. (2018) 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 348:85-98
Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei et al. (2018) Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations. Appl Clay Sci 151:46-53
Zhang, Qiang; Li, Jin; Middleton, Alistair et al. (2018) Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 6:261
Fader, K A; Nault, R; Kirby, M P et al. (2018) Corrigendum to ""Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERB?/? activation in aryl hydrocarbon receptor-elicited hepatotoxicity"" [Toxicol. Appl. Pharmacol. 321 (2017) 1-17]. Toxicol Appl Pharmacol 344:74
Williams, M R; Stedtfeld, R D; Waseem, H et al. (2017) Implications of direct amplification for measuring antimicrobial resistance using point-of-care devices. Anal Methods 9:1229-1241

Showing the most recent 10 out of 417 publications