The Superfund Basic Research Program at Texas A&M University will rely heavily on the Analytical Services Core to identify and quantify chemical of potential concern from sample obtained from existing Superfund sites, sites undergoing remediation, laboratory studies, and environmental samples from study areas used for monitoring and modelling obtained from the Field Studies Core. This research support core will provide access to a wide array of analytical instrumentation and expertise that is not available in the laboratories of the Principle Investigators directing the SRPB research projects. The Analytical Services Core will also assist the Superfund Investigators with identification and quantification of endocrine disruptive chemicals, genotoxic and non-genotixic chemicals, and chemicals regarded as developmental hazards. The determination of these chemical species will assist the TAMU Superfund Investigators in their remediation and risk assessment projects and models.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004917-19
Application #
7404538
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
19
Fiscal Year
2007
Total Cost
$104,156
Indirect Cost
Name
Texas A&M University
Department
Type
DUNS #
078592789
City
College Station
State
TX
Country
United States
Zip Code
77845
Phillips, Tracie D; Richardson, Molly; Cheng, Yi-Shing Lisa et al. (2015) Mechanistic relationships between hepatic genotoxicity and carcinogenicity in male B6C3F1 mice treated with polycyclic aromatic hydrocarbon mixtures. Arch Toxicol 89:967-77
Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S et al. (2014) Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells. PLoS One 9:e90908
dela Cruz, Albert Leo N; Cook, Robert L; Dellinger, Barry et al. (2014) Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites. Environ Sci Process Impacts 16:44-52
Wlodarczyk, Bogdan J; Zhu, Huiping; Finnell, Richard H (2014) Mthfr gene ablation enhances susceptibility to arsenic prenatal toxicity. Toxicol Appl Pharmacol 275:22-7
Taylor, John F; Robinson, Abraham; Mitchell, Nicole J et al. (2013) In vivo efficacy of ferrihydrite as an enterosorbent for arsenic: short-term evaluation in rodents. J Toxicol Environ Health A 76:167-75
Theodorakis, Christopher W; Bickham, John W; Donnelly, Kirby C et al. (2012) DNA damage in cichlids from an oil production facility in Guatemala. Ecotoxicology 21:496-511
Dash, Bhagirathi; Phillips, Timothy D (2012) Molecular characterization of a catalase from Hydra vulgaris. Gene 501:144-52
Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto et al. (2011) Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line. Toxicol Appl Pharmacol 253:45-56
Kelley, Matthew A; Gillespie, Annika; Zhou, Guo-Dong et al. (2011) In situ biomonitoring of caged, juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Lower Duwamish Waterway. Mar Pollut Bull 62:2520-32
Rinner, Brian P; Matson, Cole W; Islamzadeh, Arif et al. (2011) Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan. Ecotoxicology 20:365-76

Showing the most recent 10 out of 268 publications