The objectives in this research program are to develop new methods for the quantitative determination and for the speciation of trace (ppm to ppb) elements in complex solid or liquid matrices. Elemental profiles in environmental and biological samples have been obtained by X-ray fluorescence (XRF) and at trace levels, by proton induced X-ray emission (PIXE). This analytical capability will be developed further with special attention being devoted to improving techniques of sample preparation. This multielemental technique will be used for the speciation of heavy elements. This will be accomplished by carrying out preconcentration and chemical separations of the various species, for example, the four arsenic species commonly encountered in biological samples, and employing the PIXE technique for determining the elemental concentration. Alternative methods based on the kinetic control of chemical reactions will be explored for the speciation of elements such as arsenic. The most important objective in this research program is to extend the PIXE capability to include the use of a proton microprobe (micro-PIXE) for the measurement of elemental concentrations in microscopic size samples. Elemental profiles will be determined in a target area 100 mum x 100 mum, by rastering a 1 mum x 1 mum proton beam across this target area. Precautions will be taken to minimize sample degradation by the effects of heat and radiation damage. Elemental maps of tissue slices and single cells will be obtained with this micro-PIXE system.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications