The focus of the Arizona Superfund Basic Research Program is to improve the risk assessment process through development of toxicologic and hydrogeologic models and to improve the remediation of federal and state superfund sites through development of novel in situ remediation technologies, particularly bioremediation technologies. The program examines these factors for two classes of commonly found chemicals: chlorinated hydrocarbons and metals. Interest in these two chemical classes was stimulated by two sites in Arizona which have been affected by them: (1) South Tucson Site - a superfund site under remediation for soil and groundwater containing trichloroethylene, dichloroethylene and chromium located in the southern part of Tucson and (2) Pinal Creek Site in Central Arizona - a State Department of Environmental Quality regulated site in central Arizona that is under evaluation for metals in groundwater, surface water and soil. Metals were leached from soils after mining activities. There is a mixture of chemicals at these sites, as there are at almost all superfund sites, and the problems posed by multiple chemicals form the basis for the final objective of the program: the risk assessment and remediation of chemical mixtures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-09
Application #
2684409
Study Section
Special Emphasis Panel (SRC (G1))
Project Start
1990-03-05
Project End
2000-03-31
Budget Start
1998-04-01
Budget End
1999-03-31
Support Year
9
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Arizona
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2018) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40:1785-1802
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38

Showing the most recent 10 out of 497 publications