The focus of the Arizona Superfund Basic Research Program is to improve the risk assessment process through development of toxicologic and hydrogeologic models and to improve the remediation of federal and state superfund sites through development of novel in situ remediation technologies, particularly bioremediation technologies. The program examines these factors for two classes of commonly found chemicals: chlorinated hydrocarbons and metals. Interest in these two chemical classes was stimulated by two sites in Arizona which have been affected by them: (1) South Tucson Site - a superfund site under remediation for soil and groundwater containing trichloroethylene, dichloroethylene and chromium located in the southern part of Tucson and (2) Pinal Creek Site in Central Arizona - a State Department of Environmental Quality regulated site in central Arizona that is under evaluation for metals in groundwater, surface water and soil. Metals were leached from soils after mining activities. There is a mixture of chemicals at these sites, as there are at almost all superfund sites, and the problems posed by multiple chemicals form the basis for the final objective of the program: the risk assessment and remediation of chemical mixtures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-10
Application #
2900392
Study Section
Special Emphasis Panel (SRC (G1))
Program Officer
Suk, William
Project Start
1990-03-05
Project End
2000-03-31
Budget Start
1999-04-01
Budget End
2000-03-31
Support Year
10
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Arizona
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276
Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B et al. (2018) The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci Total Environ 633:42-49
Dehghani, Mansooreh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133-143
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164

Showing the most recent 10 out of 497 publications