The biochemical fate of inorganic arsenate and arsenite and their biotransformants are the major interest of this laboratory. Elucidation of the fate of inorganic arsenic in mammals would be expected to lead to a better understanding of the mechanisms of chronic inorganic arsenic poisoning, which is an ongoing public health problem in many countries, such as India, China, Chile, Mexico, Bangladesh, Inner Mongolia, Argentina and Taiwan and a potential one in the United States. Inorganic arsenic in the drinking water of millions of people has become a problem of global proportions. Populations are drinking water containing levels of arsenic that far exceed the maximum contamination levels established by World Health Organization and the United States EPA. Arsenic is a carcinogen for humans. Yet, how the human and other mammals process and detoxify the toxic inorganic forms of arsenic is still beset by conflicting reports, ambiguities and unknowns. This laboratory plans to study the enzymes in the human body that modifies the toxicity of arsenic species. This will be done by purifying these enzymes and studying their molecular mechanisms of action. Inhibitors of this process will also be sought as a possible way to block conversion to any carcinogenic biotransformant. A compound of high concentration is the cell is glutathione and it is known to form complexes with arsenic species. We shall study these complexes and determine the role of glutathione in how arsenic species efflux the cell.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES004940-13S2
Application #
6666396
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
13
Fiscal Year
2002
Total Cost
$142,166
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications