The theme of our Superfund Basic Research Program continues the achievements of the previous grant which is to develop a risk assessment process for metal and organic contaminants through toxicologic and hydrogeologic studies and through development of innovative remediation technologies. Our application Southwestern hazardous through development of innovative remediation technologies. Our application emphasizes Southwestern hazardous waste issue due to the unique nature of our environment. However, our studies are not limited to the Southwest since the main toxicants being examined, arsenic and chlorinated hydrocarbons, are not unique to the Southwest and our results can be applied to other hazardous waste sites. Our Program consists of 10 research projects-four (4) biomedical projects and six (6) environmental sciences projects. These are supported by 5 Cores that: administer the Program, provide research services promote outreach efforts, and support graduate student training. Our Program culminates in a Community Based Prevention/Intervention Research Project, which addresses an immediate and important environmental health problem and draws on the expertise of our Program, governmental agencies, and the community at risk to handle this environmental issue. The goal of the Biomedical research projects is to determine the fate and processing of arsenic in the body and the effects of low level arsenic exposure on target tissues-skin, kidney, and developing tissues. A continuing goal is to determine the mechanism of trichloroethylene (TCE)-induced effects on the developing tissues. A continuing goal is to determine the mechanism of trichloroethylene (TCE)-induce defects on the developing heart. One component of our studies in environmental sciences is to develop better hydrogeological models of mine wastes and develop approaches for treating this waste. A group of our environmental research projects will develop better methods to improve the removal of complex mixtures from the soils and underground waters of our Southwestern environment and use improved biological techniques (e.g. biosurfactants and gene-augmented microbes) to degrade the hazardous wastes. Finally, our chemists and bioengineers and bioengineers will develop improved, innovative technologies (both chemical and physical) for the treatment and degradation of halogenated organics . Our Program is an integrated effort to address the hazardous waste issues of our region, translate the results to our partners (government, industry, and the community), and fulfill the mandates of the national SBRP Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
3P42ES004940-14S4
Application #
6862367
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Suk, William
Project Start
1990-03-05
Project End
2005-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
14
Fiscal Year
2004
Total Cost
$29,112
Indirect Cost
Name
University of Arizona
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276
Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B et al. (2018) The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci Total Environ 633:42-49
Dehghani, Mansooreh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133-143
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26

Showing the most recent 10 out of 497 publications