The overall goal of this research project is to identify the mechanism(s) of action of trichloroethylene (TCE) and its metabolites trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) in the developing heart. Our hypothesis is that maternal ingestion of specific toxicants in drinking water at environmentally relevant doses produces altered embryonic expression of genes critical to normal heart development. In particular, we will explore the possibility that these halogenated hydrocarbons may disrupt specific biochemical processes that are essential for the normal embryonic differentiation including a methionine salvage pathway and tyrosine metabolism. In addition, we will test the hypothesis that is possible to prevent or ameliorate the occurrence of disorders induced by these toxicants in the cardiovascular system by dietary intervention with folic acid. In order to address these issues, we propose the following Specific Aims: 1. Identify altered cardiac gene expression due to maternal TCE exposure in genetically modified (CYP2E1 null) and normal mouse model; 2. Identify altered cardiac gene expression due to maternal exposure to TCAA and DCAA in normal and GSTz null mice; and 3. Assess the effects of folic acid deficiency and supplementation, created by diet, on alteration of gene expression induced by maternal exposure to TCE and TCAA. Our previous research has documented the ability of TCE and TCAA to alter the expression of numerous genes, including some involved in crucial developmental processes such as the formation of valves and septa in the embryonic heart, and genes involved in regulating calcium concentrations. In the current study we will use this information to identify the molecular pathways that are disrupted by TCE and TCAA and try to reverse or minimize their negative effects on development by dietary supplementation with folic acid. The outcome of these studies will be highly significant in light of the potential implications for the design of preventive strategies in exposed populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-17
Application #
7311851
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
17
Fiscal Year
2006
Total Cost
$201,240
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276
Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B et al. (2018) The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Sci Total Environ 633:42-49
Dehghani, Mansooreh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf 155:133-143
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26

Showing the most recent 10 out of 497 publications