Chronic exposure to arsenic in drinking water has been linked recently to cardiovascular disease. The heart and vasculature are the first organ system to form during development making it highly vulnerable to defects and adult disease due to fetal exposure to toxicants. In this regard, there is increased incidence in first trimester miscarriages, which are likely due to structural heart defects, in communities exposed to high levels of arsenic. Further, populations exposed to arsenic through contaminated drinking water have increased incidences of both heart and vascular diseases. The correct program of gene expression related to cardiovascular development and maintenance is essential and we have initial observations showing disruption by arsenic on key factors in this process. Specifically extracellular matrix (ECM) and TGFbeta2 are down-regulated by arsenic exposure during critical developmental periods for normal heart structure formation. The ECM component hyaluronan and TGFbeta2 are required for epithelial to mesenchymal transition (EMT) to contribute cardiac mesenchyme for heart valve formation and partitioning of the chambers. We will determine in Aim 1 whether arsenic attenuates these critical factors in vitro and in vivo.
In Aim 2 we will determine the extent of disruption in valve formation which can lead to valve prolapse and disease later in life. We further show in adult mice that the ECM is disrupted by arsenic ingestion altering the vascular integrity predisposing the animals to vascular disease. Connective tissue disorders have mitral valve prolapse in addition to aortic aneurysisms and ruptures, with the later condition being already linked to arsenic. The ECM contains critical molecular targets for the effects of arsenic on the cardiovascular;however, the mechanisms responsible for these outcomes are not known. Although arsenic may not cause severe enough structural heart defects to abort fetal or neonatal development, subtle alterations may translate into disease predisposition in adults. As disease in adults is speculated to have origins during development, we will determine if fetal-arsenic exposure relates to structural heart valve defects, and vessel pathologies leading to heart disease.

Public Health Relevance

Chronic exposure to arsenic in drinking water has been linked recently to cardiovascular disease. These studies will determine if in utero or neonatal exposure to arsenic results in heart and vascular diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-21
Application #
7936599
Study Section
Special Emphasis Panel (ZES1-LWJ-M (O1))
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
21
Fiscal Year
2010
Total Cost
$134,437
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138
Yan, Ni; Liu, Fei; Liu, Boyang et al. (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res Int :
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2018) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40:1785-1802
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447

Showing the most recent 10 out of 497 publications