Arsenic associated with mineral matrices seldom poses a direct environmental risk, whereas arsenic that is mobilized in the aqueous phase poses a potential threat to human and environmental health. Consequently, controlling arsenic's sequestration by solids also controls its associated risk. Chemical reactions of arsenic occurring at the solid-water interface (including adsorption and desorption, precipitation and dissolution, and reduction and oxidation) not only govern the release of arsenic into water, but form the basis of arsenic removal technologies. Thus, the enhanced fundamental understanding of arsenic behavior at critical solid-water interfaces that this project expects to achieve can be applied to both prevention and remediation of arsenic contamination. Iron-based solids are typically used to remove arsenic from contaminated water and are the typical solids with which arsenic is associated in natural aerobic environments. However, our current work has shown they are unstable when placed in the anaerobic environments that typify many arsenic-bearing waste disposal sites. The reverse is true for arsenic associated with sulfides, such as at mine impacted sites, where the shift from anaerobic to aerobic environments stimulates arsenic release. Thus, the behavior of minerals containing iron and sulfide when subjected to changing redox environments is the primary focus of the proposed work. The project's specific aims are to determine the mechanisms and pathways for 1) arsenic association with iron solids and 2) arsenic association with sulfur solids, and to develop 3) engineered intervention approaches that utilize biological and biogeochemical mineral retention processes to minimize arsenic release from solid wastes. These solid-arsenic-water reactions of interest are typically microbially mediated and may take multiple pathways and lead to multiple final solid phases with varying capacity for arsenic retention. Because of the complexity of the relevant processes, the project includes experts in aqueous geochemistry, microbiology, chemical dynamic modeling, process engineering and spectroscopy.

Public Health Relevance

Arsenic is the second most prevalent metal at NPL sites and the highest rated pollutant on the CERCLA priority list. Arsenic remediation at contaminated sites and mitigation of its release from natural sources depends on sequestration by solids. The proposed work will provide critical insight into the processes that impact arsenic retention by solids and what intervention may be most effective to minimize its mobilization.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8378313
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$325,232
Indirect Cost
$125,733
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138
Yan, Ni; Liu, Fei; Liu, Boyang et al. (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res Int :
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2018) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40:1785-1802
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447

Showing the most recent 10 out of 497 publications