(Project 1: Donna Zhang) Contamination of soil and water by metal-containing hazardous substances, particularly at sites near mine tailings and smelters, has led to chronic exposure of nearby communities to toxic metal mixtures, posing a serious health problem. Based on data from the Agency for Toxic Substances Disease Registry, the number one contaminant associated with mine tailings at these sites is the toxic metalloid arsenic (As). Epidemiological studies have demonstrated a positive correlation between chronic As exposure, either through drinking water or food, with an increased incidence of diabetes. Thus, exposure to As-containing mine tailings, which could result in inhalation or ingestion of As, may be a significant contributor to enhanced risk of disease in exposed communities. Importantly, despite the known severity of the health effects, the molecular mechanisms by which As-containing mine tailings enhance diabetic phenotypes have not yet been elucidated. Previously, we reported that low, environmentally relevant doses of arsenic block autophagy, a key cellular degradation pathway critical to maintaining proteostasis. Furthermore, we have shown that autophagic dysfunction results in prolonged activation of the key antioxidant transcription factor NRF2. Normally maintained at low levels through KEAP1-mediated ubiquitination and degradation by the 26S proteasome, NRF2 is upregulated at the protein level via oxidative modification of KEAP1 (KEAP1-C151 dependent, canonical) or sequestration of Keap1 into autophagosomes during As-induced autophagy dysfunction (p62-dependent, non-canonical). While controlled Nrf2 activation through the Keap1-C151 dependent canonical mechanism is protective, prolonged p62-dependent non-canonical activation of NRF2 during As exposure causes cellular dysfunction and tissue damage, indicative of a ?dark side? to NRF2. We hypothesize that As-containing mine tailings promote diabetes through p62-dependent, prolonged activation of Nrf2. This hypothesis is supported by our preliminary data indicating that wild type (WT) mice exposed to As showed impaired glucose tolerance and enhanced insulin resistance, which was not observed in Nrf2-/-, p62-/-, or Nrf2-/-p62-/- mice. Our recent RNAseq data generated from the liver of mice exposed to As for 20 weeks also showed significant changes in the expression of genes involved in glucose, insulin, cholesterol, and lipid metabolism. In this application, we will test our hypothesis by: 1) characterizing the time and dose-dependent diabetogenic potential of chronic exposure to As in drinking water or mine tailing As-particles (PM10) in WT mice (Aim 1); 2) determining the role of prolonged NRF2 activation in driving As-induced metabolic reprogramming in diabetes-relevant cell lines (Aim 2); and 3) in vivo confirmation of important molecular alterations induced by As and prolonged NRF2 activity in promoting diabetes (Aim 3). A mechanistic understanding of arsenic-mediated alterations that lead to diabetes will prove extremely valuable in the generation of diagnostic, preventive, and therapeutic strategies for populations exposed to As-containing mine tailings and populations at risk of arsenic exposure.

Public Health Relevance

(Project 1: Donna Zhang) Millions of people are chronically exposed to arsenic, increasing their risk of developing metabolic diseases such as diabetes. Currently, the molecular mechanisms by which arsenic promotes diabetes are not known. Our goal for this project is to investigate the molecular mechanisms by which arsenic alters cellular responses and to achieve a mechanistic understanding of the arsenic-mediated pathophysiologic alterations that lead to diabetes, enabling the generation of diagnostic, preventive, and therapeutic strategies for populations exposed to As-containing mine tailings and at risk of arsenic exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-31
Application #
9841039
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
2025-01-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
31
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications