(Project 5: Maier, Neilson, Babst-Kostecka, Rasmussen) Soil contamination with trace elements in the vicinity of mining sites and smelters poses a serious threat to humans and the environment around the globe. Revegetation of mine tailings to minimize the dispersal of pollutants via wind or ground water (i.e. phytoremediation) is a promising ?green? and low-cost intervention to toxic exposures. Unfortunately, plant growth is inhibited on most tailings, making it necessary to provide additional healthy substrate for seed germination and seedling growth. The current practice is the installation of an uncontaminated soil-gravel-rock cap over the tailings prior to plant seeding, with stockpiles of such material being readily available, a technology known as ?cap and plant?. However, critical knowledge gaps regarding plant-soil interactions have prevented a broad and efficient implementation of this technology. The primary objective of this project is to identify the optimal strategy for generating a lasting vegetation cover at hazardous mining sites. The guiding hypothesis is that the biophysicochemical properties of capping material are critical for the development of robust root systems that can propagate into the underlying contaminated mine tailings. Using an innovative experimental design, this project will develop specific soil health indices and assess the effects of capping material depth and quality on root system architecture in a prospective plant species known as saltbush (Atriplex lentiformis) for phytoremediation. Various capping materials from stockpiled overburden and adjacent natural deposits will be tested in three consecutive greenhouse studies that bring together advanced ecological, genomic, and soil health assessments. Specifically, root system development will be monitored using a noninvasive phenotyping method based on rhizotrons, filled with different combinations of capping material and mine tailings from Superfund sites across the US Southwest. Once the optimal soil and plant parameters are identified, possibilities to amend existing but low-quality capping material in a cost-effective way will be explored. This project will yield an unprecedented mechanistic understanding of concurrent changes in plant root system architecture and function in response to the quality and depth of capping materials used for mine tailing restoration. Capitalizing on this knowledge, specific guidelines towards the remediation of hazardous sites will be developed and directly transferred to the mining industry and regulators. As such, the project outcome will be valuable for the economy and society. In addition, our findings will serve as a global template for mitigating human and environmental health issues in areas affected by mines and smelters.

Public Health Relevance

(Project 5: Maier, Neilson, Babst-Kostecka, Rasmussen) Mining pollution has overwhelmed remediation efforts in many rural and urban areas in the US and beyond. This calls for new eco-friendly and low-cost solutions to mitigate the impact of this hazardous waste on human health in communities neighboring mining waste. The proposed research will optimize remediation technology to generate lasting vegetation covers that can stabilize mining wastes and prevent transport of associated contaminants via wind or ground water into surrounding areas.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004940-31
Application #
9841043
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
2025-01-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
31
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications