Polycyclic aromatic hydrocarbons (PAH) are major contaminants in soil and groundwater at a number of sites across the U.S. Many of the PAH are known or suspected carcinogens, yet many are also known to be biodegradable by bacteria and fungi indigenous to native and contaminated soils. Biological processes have been used to remediate PAH-contaminated sites, but removal of the high-molecular weight, carcinogenic species is often incomplete. Since these compounds are poorly soluble in water, their biodegradation of some of the PAH in contaminated systems is limited by factors other than bioavailability. The purpose of this project is to develop approaches by which the factor(s) that limit the degradation of PAH which appear to resist biodegradation can be identified and, eventually, overcome. Such factors can include the absence of significant numbers of microbes able to degrade these compounds; inherently very low rates of degradation of the compound by all organisms, which may be exacerbated by the presence of other PAH; loss of growth substrates for the microorganisms over time and consequent loss of PAH-degrading activity; loss of growth substrates for the microorganisms over time and consequent loss of PAH-degrading activity; and accumulation of products of incomplete metabolism that may inhibit the degradation of one or more PAH. Achievable removals of the carcinogenic PAH may determine whether active bioremediation is an acceptable technology at a given site. In addition, under emerging risk-based approaches to site management such of the PAH contamination is expected to be left in place at many sites. To understand the limits of natural attenuation and potential long-term risks at such sites, it is essential to improve our knowledge of the rates of PAH degradation and the factors that influence these rates. The proposed research will quantify rates of degradation of high-molecular weight PAH by bacteria isolated from a variety of contaminated soils and the effect of other PAH in mixtures on these rates. Then, actual contaminated soils from an industrial site will be treated will be treated in a bench-scale bioreactor to study the degradation of one or more apparently recalcitrant PAH. The factor(s) that govern the degradation of these compounds will be elucidated by: (i) quantifying the organisms in the treated soil that are capable of degrading of these compounds will be elucidated by: (i) quantifying the organisms in the treated soil that are capable of degrading the recalcitrant PAH; (ii) evaluating the effects of adding readily- degraded, naturally occurring compounds known to stimulate PAH degradation; (iii) examining whether the liquid phase in the bioreactor is inhibitory to PAH-degrading bacteria as a result of metabolite accumulation; and (iv) examining the role of bioavailability in the apparent recalcitrance of these compounds. With knowledge of the factor(s) most responsible for limited degradation of the target compound(s), we will then explore methods of stimulating biodegradation either directly in the bioreactor in treated soil removed from the bioreactor.

Project Start
2000-04-01
Project End
2001-03-31
Budget Start
Budget End
Support Year
9
Fiscal Year
2000
Total Cost
$175,236
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ Health Perspect 126:067010
To, Kimberly T; Fry, Rebecca C; Reif, David M (2018) Characterizing the effects of missing data and evaluating imputation methods for chemical prioritization applications using ToxPi. BioData Min 11:10
Dalaijamts, Chimeddulam; Cichocki, Joseph A; Luo, Yu-Syuan et al. (2018) Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicol Appl Pharmacol 352:142-152
Gray, Kathleen M (2018) From Content Knowledge to Community Change: A Review of Representations of Environmental Health Literacy. Int J Environ Res Public Health 15:
Li, Gen; Jima, Dereje; Wright, Fred A et al. (2018) HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues. BMC Bioinformatics 19:95
Adebambo, Oluwadamilare A; Shea, Damian; Fry, Rebecca C (2018) Cadmium disrupts signaling of the hypoxia-inducible (HIF) and transforming growth factor (TGF-?) pathways in placental JEG-3 trophoblast cells via reactive oxygen species. Toxicol Appl Pharmacol 342:108-115
Smeester, Lisa; Fry, Rebecca C (2018) Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 5:134-144
Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh et al. (2018) Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. J Toxicol Environ Health A 81:37-52
Singleton, David R; Lee, Janice; Dickey, Allison N et al. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 41:460-472
Luo, Yu-Syuan; Hsieh, Nan-Hung; Soldatow, Valerie Y et al. (2018) Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology 409:33-43

Showing the most recent 10 out of 505 publications