The mouse has become a powerful model organism for biomedical research in the post-genome era. The decades of research to uncover linkages between the genome and phenome using mouse models led to accumulation of a large body of knowledge on the genetic diversity and gene-environment interactions that is yet to be matched for any other mammal, including humans. This application is proposing a new systems biology approach for molecular dissection and discovery of biological pathways leading to trichloroethylene (TCE)-induced liver and kidney toxicity. Since the metabolism of TCE is qualitatively similar in mice and man, but the toxicity outcomes are thought to differ, mouse inbred strains afford a unique opportunity to understand both molecular and genetic basis for differences in responses to TCE. We will test the hypothesis that apparent species- and organ-specific toxic effects of TCE are genetically controlled and that the mechanisms of toxicity and susceptibility can be successfully elucidated using a panel of mouse inbred strains. A set of 16 mouse inbred strains being sequenced by the NIEHS Center for Rodent Genetics will be used in an experimental design that recapitulates several acute, sub-chronic and chronic studies with TCE conducted by the National Toxicology Program. First, we will determine if TCE metabolism is dependent upon genetic differences between mouse strains. Next, we will establish if strain-specific differences in TCE metabolism affects the organ-selective dose-response toxicity outcomes following sub-chronic exposure. Finally, we will test if strain-specific differences in TCE metabolism and toxicity affect the carcinogenic potential. The molecular and biochemical changes involved in the mechanisms of toxic injury and differences in metabolism of TCE will be determined using metabolomic, genomic and classical toxicology approaches. These studies will lead to a better understanding of the dose-response and mechanisms of TCE-induced toxicity anchored on metabolism and genotype-phenotype correlations that define susceptibility or resistance, and will identify relevant animal models, novel biomarkers and endpoints that can be used in animal and human studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES005948-17
Application #
7816719
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
17
Fiscal Year
2009
Total Cost
$349,894
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ Health Perspect 126:067010
To, Kimberly T; Fry, Rebecca C; Reif, David M (2018) Characterizing the effects of missing data and evaluating imputation methods for chemical prioritization applications using ToxPi. BioData Min 11:10
Dalaijamts, Chimeddulam; Cichocki, Joseph A; Luo, Yu-Syuan et al. (2018) Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicol Appl Pharmacol 352:142-152
Gray, Kathleen M (2018) From Content Knowledge to Community Change: A Review of Representations of Environmental Health Literacy. Int J Environ Res Public Health 15:
Li, Gen; Jima, Dereje; Wright, Fred A et al. (2018) HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues. BMC Bioinformatics 19:95
Adebambo, Oluwadamilare A; Shea, Damian; Fry, Rebecca C (2018) Cadmium disrupts signaling of the hypoxia-inducible (HIF) and transforming growth factor (TGF-?) pathways in placental JEG-3 trophoblast cells via reactive oxygen species. Toxicol Appl Pharmacol 342:108-115
Smeester, Lisa; Fry, Rebecca C (2018) Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 5:134-144
Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh et al. (2018) Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. J Toxicol Environ Health A 81:37-52
Singleton, David R; Lee, Janice; Dickey, Allison N et al. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 41:460-472
Luo, Yu-Syuan; Hsieh, Nan-Hung; Soldatow, Valerie Y et al. (2018) Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology 409:33-43

Showing the most recent 10 out of 505 publications