Polycyclic aromatic hydrocarbons (PAHs) are among the top 10 contaminants of concern at Superfund sites and are the major contaminants at an estimated 45,000 sites outside the jurisdiction of the Superfund program. The U.S. EPA regulates 16 PAHs, 7 of which are considered to be human carcinogens. PAHs are inherently biodegradable, but a significant fraction of each of the EPA-regulated PAHs is usually not removed during bioremediation of PAH-contaminated systems. Of particular concern is that the 4-, 5- and 6- ring compounds, which include all of the carcinogenic PAHs, are removed less extensively than the lower-molecular-weight compounds. Limitations in PAH biodegradation in field-contaminated soils are typically attributed to limitations in the availability of the PAHs to microorganisms, but this is rarely documented on a site-specific basis and has proven to be untrue of the 5- and 6-ring PAHs in a number of cases. Our ability to elucidate the factors that influence PAH degradation in any field-contaminated system is constrained by the overwhelming complexity of the system and by our relatively limited knowledge of microbial PAH metabolism and the diversity of PAH-degrading microorganisms. In some cases, interventions intended to improve PAH biodegradation can lead to the formation of toxic byproducts of PAH transformation by microorganisms. We propose to investigate the relationships among PAH bioavailability, biodegradation, the formation of toxic biotransformation products, and net risk reduction using two experimental platforms with field-contaminated soil. Soil column systems will be used to evaluate in situ approaches to bioremediation, and slurry-phase bioreactors will be used to study above-ground approaches to bioremediation. We hypothesize that different microbial communities will be selected in these systems, leading to differences in the ability to remove the most bioavailable fractions of the PAHs and in the propensity to form toxic byproducts. We also hypothesize that methods proposed to enhance PAH bioavailability for improved biodegradation are likely to form genotoxic products. Knowledge of the microbial ecology of PAH biodegradation will be expanded by using an emerging cultivation-independent molecular tool (stable-isotope probing) to identify microorganisms responsible for degrading a range of PAHs in relevant, complex systems. This knowledge is important in eventually being able to assess the potential for an indigenous microbial community to degrade specific PAHs in contaminated environments. Because dermal exposure is a major route of exposure to PAHs in contaminated soil, we will also collaborate with Project 4 to investigate the effects of contaminated soil on dermal exposure endpoints. Preliminary experiments will quantify the bioavailable fractions of PAHs relevant to potential uptake by human skin, and the effects of biological treatment of the soil on dermal exposure will be evaluated.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES005948-17
Application #
7816717
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
17
Fiscal Year
2009
Total Cost
$356,768
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Gray, Kathleen M (2018) From Content Knowledge to Community Change: A Review of Representations of Environmental Health Literacy. Int J Environ Res Public Health 15:
Li, Gen; Jima, Dereje; Wright, Fred A et al. (2018) HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues. BMC Bioinformatics 19:95
Adebambo, Oluwadamilare A; Shea, Damian; Fry, Rebecca C (2018) Cadmium disrupts signaling of the hypoxia-inducible (HIF) and transforming growth factor (TGF-?) pathways in placental JEG-3 trophoblast cells via reactive oxygen species. Toxicol Appl Pharmacol 342:108-115
Smeester, Lisa; Fry, Rebecca C (2018) Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 5:134-144
Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh et al. (2018) Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. J Toxicol Environ Health A 81:37-52
Singleton, David R; Lee, Janice; Dickey, Allison N et al. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 41:460-472
Luo, Yu-Syuan; Hsieh, Nan-Hung; Soldatow, Valerie Y et al. (2018) Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology 409:33-43
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Population genetic diversity in zebrafish lines. Mamm Genome 29:90-100
Luo, Yu-Syuan; Furuya, Shinji; Soldatov, Valerie Y et al. (2018) Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice. Toxicol Sci 164:489-500
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ Health Perspect 126:067010

Showing the most recent 10 out of 505 publications