The objective of this project is to evaluate the importance of subsurface physical and chemical heterogeneity on the transport of metals in geologically complex materials. The project will include (1) mineralogical and chemical sampling and analyses of soils, sediment, and ground-water obtained from one or more EPA superfund sites in northern New England at which As, Cd, Ni, and/or Pb are at or above EPA action- level; (2) laboratory and field testing of hydraulic transport properties of unconsolidated deposits at the chosen field site(s); (3) geostatistical analyses of the field and laboratory data; and (4) numerical simulation of the speciation and transport of nonreactive and reactive constituents in heterogeneous geological materials. This research will allow for better prediction of the subsurface transport and fate of metals at concentrations toxic to humans.

Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
5
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Taylor, V F; Buckman, K L; Seelen, E A et al. (2018) Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ Pollut 246:639-649
Shi, Xiangming; Mason, Robert P; Charette, Matthew A et al. (2018) Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Acta 222:569-583
Andrew, Angeline S; Chen, Celia Y; Caller, Tracie A et al. (2018) Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve :
Eagles-Smith, Collin A; Silbergeld, Ellen K; Basu, Niladri et al. (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170-197
Obrist, Daniel; Kirk, Jane L; Zhang, Lei et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Deyssenroth, Maya A; Gennings, Chris; Liu, Shelley H et al. (2018) Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. Environ Int 120:373-381
Chen, Celia Y; Driscoll, Charles T; Eagles-Smith, Collin A et al. (2018) A Critical Time for Mercury Science to Inform Global Policy. Environ Sci Technol 52:9556-9561
Punshon, Tracy; Carey, Anne-Marie; Ricachenevsky, Felipe Klein et al. (2018) Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environ Exp Bot 149:51-58
Liu, Maodian; Zhang, Qianru; Luo, Yao et al. (2018) Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environ Sci Technol 52:6945-6956

Showing the most recent 10 out of 372 publications