Overall objectives of the proposed study are to quantify carcinogenesis risks due to arsenic exposure at levels commonly found in the US. This research project shares the goals of the program of the program project of furthering our understanding of the environmental and health effects of arsenic has been identified as a potent skin carcinogen in highly exposed in rural regions of the northeastern US. Arsenic has been identified as a potent skin carcinogen in highly exposed human populations, but it is uncertain whether these effects occur at low levels. We propose to extend our epidemiological case-control study of bladder and skin of bladder and skin cancers in a US population: (1) to further resolve the dose-response relationship between low to moderate levels of arsenic exposure and risk of bladder cancer, (2) to test the hypothesis that arsenic is related specifically to intraepidermal carcinomas (including Bowen's disease) and multiple concomitant basal cell carcinomas (BCC) of the skin, and (3) to identify subgroups of individuals who may be at high risk of arsenic-associated cancers due to co-carcinogen exposure (e.g., low selenium). We will expand our investigations of individual biomarkers of arsenic exposure by testing the reliability of existing measures (drinking water, urine, and toenails) and exploring new molecular-genetic markers (i.e., based on cDNA arrays). New Hampshire is ideally suited to study the effects of low-dose arsenic exposure since it is one of the few regions of the country with a population-based surveillance system for non- melanoma skin cancer and over 20% of the private wells in the region contain levels of arsenic suspected of being carcinogenic. New Hampshire has unusually high bladder cancer mortality rates which are as yet unexplained, and there is accumulating evidence that these malignancies may result from arsenic ingestion. Thus, our study provides a unique opportunity to obtain results directly applicable to the US population and to help identify those at greater risk for arsenic-induced malignancies.

Project Start
2000-04-01
Project End
2001-03-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2000
Total Cost
$163,250
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Smith, T Jarrod; Sondermann, Holger; O'Toole, George A (2018) Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces. ACS Synth Biol 7:2612-2617
Wang, Chengcheng; Na, GunNam; Bermejo, Eduardo Sanchez et al. (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206-218
White, Alexandra J; O'Brien, Katie M; Jackson, Brian P et al. (2018) Urine and toenail cadmium levels in pregnant women: A reliability study. Environ Int 118:86-91
Hsu-Kim, Heileen; Eckley, Chris S; Achá, Dario et al. (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141-169
Taylor, V F; Buckman, K L; Seelen, E A et al. (2018) Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ Pollut 246:639-649
Shi, Xiangming; Mason, Robert P; Charette, Matthew A et al. (2018) Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Acta 222:569-583
Andrew, Angeline S; Chen, Celia Y; Caller, Tracie A et al. (2018) Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve :
Eagles-Smith, Collin A; Silbergeld, Ellen K; Basu, Niladri et al. (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170-197
Obrist, Daniel; Kirk, Jane L; Zhang, Lei et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296

Showing the most recent 10 out of 372 publications