All the component projects of the Dartmouth SBRP engage in statistical analysis and scientific data management. The overall objective of the proposed Biostatistics and Data Management Core is to enhance program interactivity and scientific quality by providing the SBRP full access to the biostatistical expertise and data management resources at Dartmouth. The proposed projects involve in vitro and whole animal experimental protocols utilizing a number of complex and novel complex and novel bioassays (Project 1-3, Core A); population-based epidemiologic data with sophisticated biomarker measures of individual exposure and genetic markers (Project 4); and multi-level clustered sampling in ecological and geochemical surveys (Projects 6 and 7). Sound statistical methodology and data management are essential for the successful conduct of these projects. Economics of scale are achieved by sharing the support of statistical personnel, specialized software, and computing resources within the Core. In this way, projects that would not be able ordinarily to justify FTE lines for statistical personnel can still count on expert statistical resources during critical phases of the design and analysis of their experiments and studies. The Core will also develop enhanced statistical methods necessary to study the relationship between low to moderate arsenic exposures and cancer based on the use of multiple biomarkers of exposure, and will make use of unique Web-based statistical software maintained on the Core server (http://biostat.hitchcock.org/sbrp.htm).

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES007373-06
Application #
6331448
Study Section
Special Emphasis Panel (ZES1-MAO-A (G2))
Project Start
1995-05-01
Project End
2005-03-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2000
Total Cost
$163,250
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Liu, Maodian; Chen, Long; He, Yipeng et al. (2018) Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ Int 120:333-344
Hampton, Thomas H; Jackson, Craig; Jung, Dawoon et al. (2018) Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. Environ Sci Technol 52:8811-8821
Caito, Samuel W; Jackson, Brian P; Punshon, Tracy et al. (2018) Editor's Highlight: Variation in Methylmercury Metabolism and Elimination Status in Humans Following Fish Consumption. Toxicol Sci 161:443-453
Ricachenevsky, Felipe K; Punshon, Tracy; Lee, Sichul et al. (2018) Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7. Front Plant Sci 9:865
Ritger, Amelia L; Curtis, Amanda N; Chen, Celia Y (2018) Bioaccumulation of mercury and other metal contaminants in invasive lionfish (Pterois volitans/miles) from CuraƧao. Mar Pollut Bull 131:38-44
Punshon, Tracy; Jackson, Brian P (2018) Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem 252:258-264
Seelen, Emily A; Massey, Grace M; Mason, Robert P (2018) Role of Sediment Resuspension on Estuarine Suspended Particulate Mercury Dynamics. Environ Sci Technol 52:7736-7744
Selin, Henrik; Keane, Susan Egan; Wang, Shuxiao et al. (2018) Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio 47:198-215
Smith, T Jarrod; Sondermann, Holger; O'Toole, George A (2018) Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces. ACS Synth Biol 7:2612-2617
Wang, Chengcheng; Na, GunNam; Bermejo, Eduardo Sanchez et al. (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206-218

Showing the most recent 10 out of 372 publications