Fish are known conduits of metal exposure to humans and wildlife. Yet, there is a great deal of unexplained variation in metal levels found when fish from different lakes even within the same region are compared. Studies indicate that a large part of the lake-to-lake variation may be driven by as yet not understood differences among lower trophic levels of the food web. Our working hypothesis is that lakes characterized by small-bodied Vs. large-bodied zooplankton food webs transfer metals from algae to fish differently, and these differences can be predicted from taxa-specific properties such as metal exposure rates (via activity), burdens and feeding web relations. Our recent research suggests that two significant aspects of food web structure strongly influence metal movement into fish. First, we found that increasing the number of feeding connections within zooplankton trophic levels results in a reduction in movement of metals to fish. First, we found that increasing the number of feeding connections within zooplankton trophic levels result in a reduction in movement of metals to fish. Second, we find evidence that particular zooplankton taxa (""""""""keystone conduits"""""""") profoundly influence the degree of bioaccumulation of metals suggesting that lakes dominated by different zooplankton taxa will differ in the level of metal trophic transfer to fish. Our end goal is to develop a mechanistic model to explain variation in metal burdens for 4 potentially toxic metals (As, Hg and MeHg, Zn and mechanistic model to explain variation in metal burdens for 4 potentially toxic metals (As, Hg and MeHg, , Zn and Cd) in plankton and fish across a variety of systems that arise from differences in the food web structure and the ability of particular taxa to accumulate, magnify or dilute metals. This proposal has four specific aims.
Aim 1 is to characterize metal trophic pathways in the field and test whether the transfer to fish diminishes as zooplankton complexity increases. We will contrast metal transfer between lakes with large-bodied, less complex (LLC) Vs. small-bodied, more complex (SMC) webs and tests for temporal consistency across metals and taxa within lakes.
Aim 2 is to determine the strength and consistency of specific zooplankton taxa as conduits of metals to fish. We hypothesize that larger bodied, metabolically active zooplankton will have higher total metal burdens than smaller, , less active zooplankton.
Aim 3 is to test whether increasing algal productivity decreases the movement of different metals to top trophic levels. Novel stable metal isotope techniques will be used to compare trophic transfer in LLC and SMC food webs.
Aim 4 is to develop general and specific biomarkers to investigate the environmental relevance responses to metal stress in natural field populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007373-07
Application #
6443946
Study Section
Special Emphasis Panel (ZES1)
Project Start
2001-04-01
Project End
2002-03-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2001
Total Cost
$163,250
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Punshon, Tracy; Carey, Anne-Marie; Ricachenevsky, Felipe Klein et al. (2018) Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environ Exp Bot 149:51-58
Liu, Maodian; Zhang, Qianru; Luo, Yao et al. (2018) Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environ Sci Technol 52:6945-6956
Chen, Celia Y; Driscoll, Charles T (2018) Integrating mercury research and policy in a changing world. Ambio 47:111-115
Liu, Maodian; He, Yipeng; Baumann, Zofia et al. (2018) Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environ Sci Technol 52:8838-8847
Taylor, Vivien F; Li, Zhigang; Sayarath, Vicki et al. (2018) Author Correction: Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep 8:4145
Emond, Jennifer A; Karagas, Margaret R; Baker, Emily R et al. (2018) Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J Nutr 148:22-30
Jackson, Brian P (2018) Low level determination of gallium isotopes by ICP-QQQ. J Anal At Spectrom 33:897-900
Nachman, Keeve E; Punshon, Tracy; Rardin, Laurie et al. (2018) Opportunities and Challenges for Dietary Arsenic Intervention. Environ Health Perspect 126:84503
Koutros, Stella; Baris, Dalsu; Waddell, Richard et al. (2018) Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int J Cancer 143:2640-2646
Liu, Maodian; Chen, Long; He, Yipeng et al. (2018) Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ Int 120:333-344

Showing the most recent 10 out of 372 publications