All the component projects of the Dartmouth SBRP engage in statistical analysis and scientific data management. The overall objective of the proposed Biostatistics and Data Management Core is to enhance program interactivity and scientific quality by providing the SBRP full access to the biostatistical expertise and data management resources at Dartmouth. The proposed projects involve in vitro and whole animal experimental protocols utilizing a number of complex and novel complex and novel bioassays (Project 1-3, Core A); population-based epidemiologic data with sophisticated biomarker measures of individual exposure and genetic markers (Project 4); and multi-level clustered sampling in ecological and geochemical surveys (Projects 6 and 7). Sound statistical methodology and data management are essential for the successful conduct of these projects. Economics of scale are achieved by sharing the support of statistical personnel, specialized software, and computing resources within the Core. In this way, projects that would not be able ordinarily to justify FTE lines for statistical personnel can still count on expert statistical resources during critical phases of the design and analysis of their experiments and studies. The Core will also develop enhanced statistical methods necessary to study the relationship between low to moderate arsenic exposures and cancer based on the use of multiple biomarkers of exposure, and will make use of unique Web-based statistical software maintained on the Core server (http://biostat.hitchcock.org/sbrp.htm).

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007373-08
Application #
6577239
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$163,250
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Smith, T Jarrod; Sondermann, Holger; O'Toole, George A (2018) Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces. ACS Synth Biol 7:2612-2617
Wang, Chengcheng; Na, GunNam; Bermejo, Eduardo Sanchez et al. (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206-218
White, Alexandra J; O'Brien, Katie M; Jackson, Brian P et al. (2018) Urine and toenail cadmium levels in pregnant women: A reliability study. Environ Int 118:86-91
Hsu-Kim, Heileen; Eckley, Chris S; Achá, Dario et al. (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141-169
Taylor, V F; Buckman, K L; Seelen, E A et al. (2018) Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ Pollut 246:639-649
Shi, Xiangming; Mason, Robert P; Charette, Matthew A et al. (2018) Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Acta 222:569-583
Andrew, Angeline S; Chen, Celia Y; Caller, Tracie A et al. (2018) Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve :
Eagles-Smith, Collin A; Silbergeld, Ellen K; Basu, Niladri et al. (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170-197
Obrist, Daniel; Kirk, Jane L; Zhang, Lei et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296

Showing the most recent 10 out of 372 publications