Trace Elements Analysis Core: Abstract The primary goal of the Trace Element Analysis (TEA) core is to provide low level trace element analysis and speciation and analytical chemistry expertise to Dartmouth SRP researchers to allow them to successfully complete the aims of their individual projects. Additionally, the TEA core strives to be at the forefront of (mission-related) method development that augments the themes of the Dartmouth SRP projects and advances these projects by providing analytical advances such as lower detection limits, quantification of as yet unmeasured metal species, and the novel application of an analytical methodology. The TEA core utilizes state of the art analytical instrumentation based on inductively coupled plasma mass spectrometry (ICP-MS) to provide low level determinations of trace elements in a variety of biological and environmental matrices. The TEA core also provides speciation analysis for arsenic and mercury by liquid chromatography and gas chromatography coupled to ICP-MS, respectively. The core strives to provide accurate, precise and validated data to support Dartmouth Superfund Projects and employs a quality control program commensurate with that expected of US EPA contract laboratories. The TEA core participates in national and international proficiency testing to ensure the accuracy of its analytical procedures and has been subject to both internal and external review processes to ensure it is providing useful analytical services in a timely manner. The core develops analytical methods such as 2D elemental imaging of biological samples by laser ablation-ICP-MS or extraction and determination of arsenic species in foods and juices to support projects 1 and 4. The core serves project 2 by providing new instrumentation and expertise for ultra-low level mercury determination and speciation. The core also serves project 3 and 4 by the determination of arsenic concentration and speciation in water, biological tissues and cell suspensions and lysates.

Public Health Relevance

Trace Elements Analysis Core: Narrative The TEA core determines total arsenic and mercury concentration and speciation in biomarkers of human exposure such as hair, toenails, urine and blood and these data are used by epidemiologists to predict risk to human health. The core determines arsenic speciation in foods to predict potential risk to human health and determines mercury concentrations and speciation in the environment for the assessment of methylmercury production and fate in response to multiple environmental factors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007373-23
Application #
9458747
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
23
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
Chen, Celia Y; Driscoll, Charles T (2018) Integrating mercury research and policy in a changing world. Ambio 47:111-115
Liu, Maodian; He, Yipeng; Baumann, Zofia et al. (2018) Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environ Sci Technol 52:8838-8847
Taylor, Vivien F; Li, Zhigang; Sayarath, Vicki et al. (2018) Author Correction: Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep 8:4145
Emond, Jennifer A; Karagas, Margaret R; Baker, Emily R et al. (2018) Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J Nutr 148:22-30
Jackson, Brian P (2018) Low level determination of gallium isotopes by ICP-QQQ. J Anal At Spectrom 33:897-900
Nachman, Keeve E; Punshon, Tracy; Rardin, Laurie et al. (2018) Opportunities and Challenges for Dietary Arsenic Intervention. Environ Health Perspect 126:84503
Koutros, Stella; Baris, Dalsu; Waddell, Richard et al. (2018) Potential effect modifiers of the arsenic-bladder cancer risk relationship. Int J Cancer 143:2640-2646
Liu, Maodian; Chen, Long; He, Yipeng et al. (2018) Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ Int 120:333-344
Hampton, Thomas H; Jackson, Craig; Jung, Dawoon et al. (2018) Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. Environ Sci Technol 52:8811-8821
Caito, Samuel W; Jackson, Brian P; Punshon, Tracy et al. (2018) Editor's Highlight: Variation in Methylmercury Metabolism and Elimination Status in Humans Following Fish Consumption. Toxicol Sci 161:443-453

Showing the most recent 10 out of 372 publications