Halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polybrominated and polychlorinated diphenyl ethers (PBDEs and PCDEs) are important Superfund and environmental contaminants. Complex mixtures of these compounds can be found in the environment. The research support described in this proposal is the following list includes all initially requested organohalogen compounds, which will be made available to the individual Research Projects: PCB congeners (Project #1, #2, #3, #4, #5 and #7), hydroxylated PCB metabolites (Projects #1, #2, #4 and #7), 3,4-Arene oxides (Project #1), benzoquinone metabolites and glutathione conjugates of PCBs (Project #1), PBDE and PCDE congers (Research Project #6). These compounds will be synthesized with straightforward synthetic approaches that are well established in our laboratory. Because of our extensive synthetic experience with the synthesis of organohalogen compounds, we are able to synthesize every compound of interest.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES007380-04
Application #
6328400
Study Section
Special Emphasis Panel (ZES1-DPB-D (G3))
Project Start
1997-04-07
Project End
2005-03-31
Budget Start
Budget End
Support Year
4
Fiscal Year
2000
Total Cost
$142,466
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
832127323
City
Lexington
State
KY
Country
United States
Zip Code
40506
Petriello, Michael C; Hoffman, Jessie B; Vsevolozhskaya, Olga et al. (2018) Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 242:1022-1032
Petriello, Michael C; Charnigo, Richard; Sunkara, Manjula et al. (2018) Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environ Res 162:211-218
Deng, Pan; Barney, Jazmyne; Petriello, Michael C et al. (2018) Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 217:140-149
Preston, Joshua D; Reynolds, Leryn J; Pearson, Kevin J (2018) Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 64:237-245
Gupta, Prachi; Thompson, Brendan L; Wahlang, Banrida et al. (2018) The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 8:740-759
Roghani, Mohammadyousef; Jacobs, Olivia P; Miller, Anthony et al. (2018) Occurrence of chlorinated volatile organic compounds (VOCs) in a sanitary sewer system: Implications for assessing vapor intrusion alternative pathways. Sci Total Environ 616-617:1149-1162
Ahmad, Irfan; Weng, Jiaying; Stromberg, A J et al. (2018) Fluorescence based detection of polychlorinated biphenyls (PCBs) in water using hydrophobic interactions. Analyst :
Hernández, Sebastián; Porter, Cassandra; Zhang, Xinyi et al. (2017) Layer-by-layer Assembled Membranes with Immobilized Porins. RSC Adv 7:56123-56136
Wahlang, Banrida; Barney, Jazmyne; Thompson, Brendan et al. (2017) Editor's Highlight: PCB126 Exposure Increases Risk for Peripheral Vascular Diseases in a Liver Injury Mouse Model. Toxicol Sci 160:256-267
Bertrand, Luc; Dygert, Levi; Toborek, Michal (2017) Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J Vis Exp :

Showing the most recent 10 out of 255 publications