RGBs have both tumor promoting and vascular effects;however, little is known about their influence on the development of metastatic disease. We indicated that selected non-coplanar PCB congeners accumulate in the brain, stimulate dysfunction of brain microvascular endothelial cells (BMEC), and facilitate the interaction of tumor cells with the vascular endothelium. Our new data provide evidence that PCBs localize to caveolae in endothelial cells. This is an important finding because a variety of cell surface receptors and signaling pathways are also localized in these membrane domains. Thus, caveolae may provide the crucial signaling platform for cerebral vascular toxicity of PCBs. We hypothesize that PCB-induced stimulation of caveolar-associated pathways, such as the Ras and Rho cascades, underlie the mechanisms of PCB-induced injury to BMEC, disruption of the bloodbrain barrier (BBB) integrity, and the development of brain metastases. Mechanistically, we will focus on the involvement of the Ras and Rho pathways in PCB-induced alterations of expression of tight junction proteins, which are associated with caveolae and are detrimental for the normal functions of the brain endothelium and regulate the barrier properties of the BBB. Diet is one of the most powerful modifiable behavioral factors which can influence cancer development and progression. Moreover, our data indicate that exposure to PCBs can upregulate expression of CD36, a receptor which is localized in caveolae and is involved in cellular uptake of fatty acids. Therefore, we will also study the influence of dietary polyunsaturated fatty acids (namely fatty acids of the omega-6 and omega-3 family) on the vascular toxicity of PCBs and PCB-induced brain metastases. Specifically, we hypothesize that omega- 6 fatty acids (e.g., linoleic acid) potentiate the pro-metastatic properties of selected PCBs and that omega-3 fatty acids (e.g., alpha-linolenic acid) protect against these effects. The proposed research combines elements of clinical and translational approaches (brain metastases) with environmental toxicology and molecular biology. In addition, it is based on a variety of model systems, such as unique cultures of brain endothelial cells, Transwell systems, and in vivo studies based on genetically altered mice (caveolin-1 deficient mice). The long term goals of this application are to determine molecular mechanisms of metastatic events induced by PCBs. However, an even more important goal of this proposal is to evaluate how dietary factors can influence the development of tumor metastases induced by Superfund chemicals. Therefore, our application has strong clinical implications and can significantly contribute to the improvement of public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007380-13
Application #
7795947
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
13
Fiscal Year
2009
Total Cost
$288,575
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Deng, Pan; Barney, Jazmyne; Petriello, Michael C et al. (2018) Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 217:140-149
Preston, Joshua D; Reynolds, Leryn J; Pearson, Kevin J (2018) Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 64:237-245
Gupta, Prachi; Thompson, Brendan L; Wahlang, Banrida et al. (2018) The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 8:740-759
Roghani, Mohammadyousef; Jacobs, Olivia P; Miller, Anthony et al. (2018) Occurrence of chlorinated volatile organic compounds (VOCs) in a sanitary sewer system: Implications for assessing vapor intrusion alternative pathways. Sci Total Environ 616-617:1149-1162
Ahmad, Irfan; Weng, Jiaying; Stromberg, A J et al. (2018) Fluorescence based detection of polychlorinated biphenyls (PCBs) in water using hydrophobic interactions. Analyst :
Petriello, Michael C; Hoffman, Jessie B; Vsevolozhskaya, Olga et al. (2018) Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 242:1022-1032
Petriello, Michael C; Charnigo, Richard; Sunkara, Manjula et al. (2018) Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environ Res 162:211-218
Sarma, Rupam; Islam, Md Saiful; Miller, Anne-Frances et al. (2017) Layer-by-Layer-Assembled Laccase Enzyme on Stimuli-Responsive Membranes for Chloro-Organics Degradation. ACS Appl Mater Interfaces 9:14858-14867
Tang, Shuo; Floy, Martha; Bhandari, Rohit et al. (2017) Synthesis and Characterization of Thermoresponsive Hydrogels Based on N-Isopropylacrylamide Crosslinked with 4,4'-Dihydroxybiphenyl Diacrylate. ACS Omega 2:8723-8729
Reichman, Rivka; Shirazi, Elham; Colliver, Donald G et al. (2017) US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites. Environ Sci Process Impacts 19:87-100

Showing the most recent 10 out of 255 publications