The contamination of soils with lead (Pb) and arsenic (As) has created potential health hazards at numerous sites throughout the country, including hundreds now designated as Superfund sites. The bioavailability (i.e., exposed to Pb and As from soil currently use assumptions based on bioavailability data from animal or in vitro models. Using the technique of stable Pb isotope dilution, we have developed a model for estimating soil Pb bioavailability in humans. This model examines changes in the ratio of 206Pb to 207Pb in blood, following the ingestion of trace quantities of Pb-contaminated soils. Thus, we propose to examine the human bioavailability of soils from a mining site, a smelter site, and a urban site. Through collaboration with EPA, we have already obtained soils from a mining site and a smelter site which are isotopically ideal for study. In addition, we propose to determine whether soil amending agents currently being tested in the field by EPA actually reduce soil Pb bioavailability in humans. This phase of our work is important because the same pre- and post-amended soils, from a former smelter site in Joplin, Missouri, are currently being evaluated in swine, rat and in vitro models, possibly allowing validation of the less expensive in vitro model. Finally, we will explore the possibility that the ingestion of these soils, some of which contain trace quantities of As, may allow us to estimate the urinary excretion fraction (UEF) for soil As. Collectively, these studies promise to improve the precision of risk assessments At site contaminated with Pb and As.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010349-03
Application #
6660051
Study Section
Special Emphasis Panel (ZES1)
Project Start
2002-09-11
Project End
2003-03-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$153,283
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Haque, Ezazul; Mailloux, Brian J; de Wolff, Daisy et al. (2018) Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits. Sci Total Environ 618:579-585
Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque et al. (2018) A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ Int 118:304-313
Sun, Jing; Mailloux, Brian J; Chillrud, Steven N et al. (2018) Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of Standard Additions with X-ray Absorption Spectroscopy. Chem Geol 476:248-259
Argos, Maria; Tong, Lin; Roy, Shantanu et al. (2018) Screening for gene-environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 29:101-111
Wu, Fen; Chi, Liang; Ru, Hongyu et al. (2018) Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environ Health Perspect 126:017005
Sanchez, Tiffany R; Powers, Martha; Perzanowski, Matthew et al. (2018) A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr Environ Health Rep 5:244-254
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Sanchez, Tiffany R; Slavkovich, Vesna; LoIacono, Nancy et al. (2018) Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environ Int 121:852-860
Spratlen, Miranda J; Grau-Perez, Maria; Umans, Jason G et al. (2018) Arsenic, one carbon metabolism and diabetes-related outcomes in the Strong Heart Family Study. Environ Int 121:728-740
Balakrishnan, Poojitha; Navas-Acien, Ana; Haack, Karin et al. (2018) Arsenic-gene interactions and beta-cell function in the Strong Heart Family Study. Toxicol Appl Pharmacol 348:123-129

Showing the most recent 10 out of 333 publications