The research proposed for this project is intended to augment our fundamental understanding of arsenic (As) behavior in ways that lead directly to a reduction in human exposure in both the U.S. and in Bangladesh. At the Vineland Chemical Superfund site in New Jersey, heavily contaminated with both inorganic As (InAs) and organic As (OrgAs), research will focus on reducing off-site transport of these contaminants in two ways. The effort will first be directed at polishing effluent from the existing treatment plant using a treatment column containing zero-valent iron (Fe(0)) filings which, this project's previous research has demonstrated, is capable of removing both InAs and OrgAs. Second, the feasibility of reducing off-site transport of As will be explored by installing and monitoring a permeable-reactive barrier containing Fe(0) filings. In Bangladesh, we are ethically compelled to lower the As exposure of study participants in Projects 2, 3, and 4. The proposed research will focus on the sustainability of continued withdrawals from those aquifers that are currently low in As. The justification is that these aquifers are currently the only realistic alternative for the approximately 50 million inhabitants of the country who have been drinking well water with an As content that often exceeds the WHO guideline of 10 ug/L by one to two orders of magnitude. Through detailed monitoring and targeted manipulations in the field and in the laboratory, the combination of hydrological, geochemical, and microbial processes that maintain As concentrations at low levels in both very shallow (<10 m) and deep (>30-150 m) aquifers will be investigated. In a direct application of the approach to mitigation developed under the previous round of funding, the exposure to As and Mn of children and adults, participating in Project 3 and 4 and residing in 25 villages, will be rapidly reduced by targeting safe aquifers for the installation of community wells. The timing of these interventions will be closely synchronized with parallel studies of their health impact, conducted under biomedical components of this application.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES010349-10
Application #
8065870
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
10
Fiscal Year
2010
Total Cost
$463,870
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Niedzwiecki, Megan M; Liu, Xinhua; Zhu, Huiping et al. (2018) Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: A one-carbon metabolism candidate gene study. Environ Int 113:133-142
Shoenfelt, Elizabeth M; Winckler, Gisela; Lamy, Frank et al. (2018) Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc Natl Acad Sci U S A 115:11180-11185
Haque, Ezazul; Mailloux, Brian J; de Wolff, Daisy et al. (2018) Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits. Sci Total Environ 618:579-585
Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque et al. (2018) A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ Int 118:304-313
Sun, Jing; Mailloux, Brian J; Chillrud, Steven N et al. (2018) Simultaneously Quantifying Ferrihydrite and Goethite in Natural Sediments Using the Method of Standard Additions with X-ray Absorption Spectroscopy. Chem Geol 476:248-259
Argos, Maria; Tong, Lin; Roy, Shantanu et al. (2018) Screening for gene-environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 29:101-111
Wu, Fen; Chi, Liang; Ru, Hongyu et al. (2018) Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environ Health Perspect 126:017005
Sanchez, Tiffany R; Powers, Martha; Perzanowski, Matthew et al. (2018) A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr Environ Health Rep 5:244-254
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Sanchez, Tiffany R; Slavkovich, Vesna; LoIacono, Nancy et al. (2018) Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environ Int 121:852-860

Showing the most recent 10 out of 333 publications