The plans and activities of the Research Translation Core (RTC) of the Iowa superfund basic research program (isbrp) are designed with four aims in mind. The first is to formally transfer technology to commercial entities able to develop and deliver products or services to the public (Aim 1);second, to contribute to the development of sound public policies and practices (Aim 2); third, to contribute to the research base in isbrp investigator disciplines (Aim 3);and fourth, to contribute to a broader public understanding of problems and solutions regarding environmental hazards and their remediation (Aim 4). Significant preliminary contacts and meetings have laid the groundwork for these plans, and designated liaisons (isbrp faculty, staff) will be responsible for sustaining or developing further relationships with identified partners. Technology transfer activities of the Synthesis Core, the Analytical Core, and Projects #4 and #6 will be supported by RTC staff and assisted by the University of Iowa Research Foundation (UIRF). Technology transfer activities will involve the academic research community and industry, and receive guidance from the RTC External Advisory Committee. A comprehensive communications plan will reflect and guide overall decision making on how, when and to whom research findings will be disseminated and information distributed. This core will work in close coordination with the Community Outreach Core (COC), especially on the COC plans to support implementation of Research Project #6. RTC personnel have exceptionally broad experience in research translation and community organization;their many years of combined experience provide the knowledge, skills, and contacts to achieve core aims.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013661-04
Application #
7795967
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
4
Fiscal Year
2009
Total Cost
$90,710
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
P?n?íková, Kate?ina; Brenerová, Petra; Svržková, Lucie et al. (2018) Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Environ Sci Pollut Res Int 25:16411-16419
Robertson, Larry W; Weber, Roland; Nakano, Takeshi et al. (2018) PCBs risk evaluation, environmental protection, and management: 50-year research and counting for elimination by 2028. Environ Sci Pollut Res Int 25:16269-16276
Klaren, William D; Vine, David; Vogt, Stefan et al. (2018) Spatial distribution of metals within the liver acinus and their perturbation by PCB126. Environ Sci Pollut Res Int 25:16427-16433
Tomsho, Kathryn S; Basra, Komal; Rubin, Staci M et al. (2018) Correction to: Community reporting of ambient air polychlorinated biphenyl concentrations near a Superfund site. Environ Sci Pollut Res Int 25:16401
Uwimana, Eric; Li, Xueshu; Lehmler, Hans-Joachim (2018) Human Liver Microsomes Atropselectively Metabolize 2,2',3,4',6-Pentachlorobiphenyl (PCB 91) to a 1,2-Shift Product as the Major Metabolite. Environ Sci Technol 52:6000-6008
Herkert, Nicholas J; Hornbuckle, Keri C (2018) Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment. Environ Sci Process Impacts 20:757-766
Herkert, Nicholas J; Spak, Scott N; Smith, Austen et al. (2018) Calibration and evaluation of PUF-PAS sampling rates across the Global Atmospheric Passive Sampling (GAPS) network. Environ Sci Process Impacts 20:210-219
Dhakal, Kiran; Gadupudi, Gopi S; Lehmler, Hans-Joachim et al. (2018) Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ Sci Pollut Res Int 25:16277-16290
Enayah, Sabah H; Vanle, Brigitte C; Fuortes, Laurence J et al. (2018) PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394:93-101
Klinefelter, Kelsey; Hooven, Molly Kromme; Bates, Chloe et al. (2018) Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 29:112-127

Showing the most recent 10 out of 298 publications