? OVERALL CENTER The Oregon State University Superfund Research Program (SRP), in partnership with Pacific Northwest National Laboratories and other stakeholders and collaborators, seeks to develop new technologies to identify the polycyclic aromatic hydrocarbon (PAHs) mixtures found at many of the nation's Superfund sites before and after remediation. We will identify novel hazard and toxicity mechanisms for PAHs and real-world PAH mixtures. The SRP will support three biomedical research projects and two environmental science and engineering projects. We aligned these research projects with the four SRP mandates to address pressing challenges at Superfund sites. The Administrative, Community Engagement, Chemical Mixtures, Research Experience and Training, and Data Management and Analysis cores support the research projects. This proposal builds on our successes during the previous grant period. Over the next five years, we will pursue innovative, high-impact research goals. For example, we propose to (1) develop the first generalizable technology to measure the movement of PAHs to and from Superfund sites, (2) measure external exposures to PAHs for individuals near Superfund sites and determine how their exposures vary as a function of location, (3) predict the secondary transformation products of PAHs that will form during biotic and abiotic remediation at Superfund sites, (4) predict the toxicity of complex PAH mixtures using zebrafish, (5) link PAH exposure to health outcomes with the aid of a powerful human in vitro respiratory model, and (6) elucidate metabolic and physicochemical control of PAH susceptibility in toxicity systems. The cores will (1) direct the activities of the SRP and disseminate our findings to stakeholders (Administrative), (2) work with communities impacted by PAH exposure to address concerns and reduce risk (Community Engagement); (3) provide intensive multi-disciplinary training for the next generation of Environmental Health Scientists (RETCC), (4) provide data management and analysis support (DMAC), and (5) apply state-of- the-art chemistry instrumentation and approaches to measure PAHs and PAH mixtures found in environmental and biological matrices. By accomplishing these goals, we will advance the frontiers of science and also improve the quality of life for impacted communities.

Public Health Relevance

? OVERALL CENTER PAH contamination at over 800 Superfund Sites poses a significant exposure risk to humans and the environment. The Oregon State University Superfund Research Program is developing technologies to understand PAH mixture composition at superfund sites, to predict their toxicity, and to reduce their impacts on the environment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES016465-12
Application #
10135063
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Carlin, Danielle J
Project Start
2009-09-17
Project End
2025-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
12
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Oregon State University
Department
Public Health & Prev Medicine
Type
Earth Sciences/Resources
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97331
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ Health Perspect 126:067010
Geier, Mitra C; James Minick, D; Truong, Lisa et al. (2018) Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish. Toxicol Appl Pharmacol 354:115-125
Tan, Yu-Mei; Leonard, Jeremy A; Edwards, Stephen et al. (2018) Aggregate Exposure Pathways in Support of Risk Assessment. Curr Opin Toxicol 9:8-13
Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah et al. (2018) Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples. J Chromatogr A 1541:57-62
Geier, Mitra C; Chlebowski, Anna C; Truong, Lisa et al. (2018) Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol 92:571-586
Bugel, Sean M; Tanguay, Robert L (2018) Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish. Toxicol Appl Pharmacol 344:23-34
Garcia, Gloria R; Bugel, Sean M; Truong, Lisa et al. (2018) AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS One 13:e0193484
Roper, Courtney; Simonich, Staci L Massey; Tanguay, Robert L (2018) Development of a high-throughput in vivo screening platform for particulate matter exposures. Environ Pollut 235:993-1005
Haggard, Derik E; Noyes, Pamela D; Waters, Katrina M et al. (2018) Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 77:80-93
Hummel, Jessica M; Madeen, Erin P; Siddens, Lisbeth K et al. (2018) Pharmacokinetics of [14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food Chem Toxicol 115:136-147

Showing the most recent 10 out of 174 publications