Study Objectives: The goal of this project is to develop and test a portable, low-maintenance, and self- cleaning water purification technology for both point-of-use and point-of-entry water treatment. A novel electro- Fenton (EF)-like Electrochemical Advanced Oxidation Process (EAOP) will be coupled with sorption using practical, cost-effective, environmentally friendly carbon-based porous cathodes. Two approaches will be implemented: 1) removal of organic mixtures from the water via adsorption by carbon-based electrodes, then regeneration of the adsorbent via application of the EAOP on the carbon-based porous cathode surfaces to locally generate reactive oxygen species (ROS); and 2) simultaneous application of adsorption and EAOP. The motivation for this work is the need to provide clean water to communities near Superfund sites in Puerto Rico that lack access to clean water after the devastation of Hurricane Maria in 2017, as well as the need for a water treatment technology that can be used in rural areas. Study Approach: Laboratory studies will be conducted using water collected from the study area in Puerto Rico. Target chemicals will include chlorinated solvents, phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs). Mechanistic studies will investigate continuous generation of ROS without addition of traditional catalysts (Pd, Fe) that are expensive, waste-producing, or potentially toxic. Instead, we will use three types of benign carbon-based cathodes: Granular Activated Carbon (GAC), Activated Carbon Fiber (ACF) and Granular Biochar (GB). Enhancement techniques that include polarity reversal and floating cathodes will be tested, and conditions that maximize continuous generation of ROS will be identified. Sorption characteristics of the three carbon-based cathodes will be measured, and EAOP?s ability to regenerate the sorption capacity of the cathodes and simultaneously oxidize aqueous contaminants will be tested. To improve understanding of transformation pathways and mechanisms, we will measure changes in concentration of target organics and analyze newly formed by-products. For these laboratory tests, water collected from Puerto Rico will be mixed with model contaminants and used for testing. The variations in toxicity levels and mechanistic profiles during the course of the electrochemically induced degradation will disclose potential causal agents and their links to the degradation pathways. Scaling of operational parameters and performance, geochemical and hydraulic parameters during operation, toxicity evolution, and potential adverse effects will be investigated. We will also assess the risk reduction efficacy of the process using a novel toxicogenomics-based toxicity assessment. Expected Results: Based on this technology, a portable water, self-cleaning treatment system will be designed and tested on water samples from Puerto Rico. The system will be engineered for inclusion into both point-of-use and point-of-entry water treatment systems and can also be implemented in rural areas in the US mainland that are not connected to public water systems.

Public Health Relevance

This project will develop environmentally friendly, portable, self-cleaning technologies to remove mixtures of chemicals from contaminated drinking water. These technologies are most critical in areas that lack access to public water systems or in areas that are devastated by extreme events like hurricanes. Providing clean water will help minimize the health risks, such as adverse pregnancy outcomes, that are associated with exposure to mixtures of contaminants from Superfund sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES017198-10
Application #
9839915
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
2025-01-31
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
10
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northeastern University
Department
Type
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Nazari, Roya; Raji?, Ljiljana; Xue, Yunfei et al. (2018) Degradation of 4-Chlorophenol in Aqueous Solution by Sono-Electro-Fenton Process. Int J Electrochem Sci 13:9214-9230
Zhou, Wei; Meng, Xiaoxiao; Rajic, Ljiljana et al. (2018) ""Floating"" cathode for efficient H2O2 electrogeneration applied to degradation of ibuprofen as a model pollutant. Electrochem commun 96:37-41
Ashrap, Pahriya; Watkins, Deborah J; Calafat, Antonia M et al. (2018) Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: Predictors and trends. Environ Int 121:990-1002
Ferguson, Kelly K; Meeker, John D; Cantonwine, David E et al. (2018) Environmental phenol associations with ultrasound and delivery measures of fetal growth. Environ Int 112:243-250
Cathey, Amber; Ferguson, Kelly K; McElrath, Thomas F et al. (2018) Distribution and predictors of urinary polycyclic aromatic hydrocarbon metabolites in two pregnancy cohort studies. Environ Pollut 232:556-562
Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na et al. (2018) Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis. Environ Sci Technol 52:6565-6575
Wang, Poguang; Giese, Roger W (2018) Interpretation of Mass Spectral Data for the Cisplatin 1,2 Intrastrand Guanine-Guanine Adduct. Chem Res Toxicol 31:1106-1107
Hojabri, Shirin; Rajic, Ljiljana; Alshawabkeh, Akram N (2018) Transient reactive transport model for physico-chemical transformation by electrochemical reactive barriers. J Hazard Mater 358:171-177
Ferguson, Kelly K; Kamai, Elizabeth M; Cantonwine, David E et al. (2018) Associations between repeated ultrasound measures of fetal growth and biomarkers of maternal oxidative stress and inflammation in pregnancy. Am J Reprod Immunol 80:e13017
Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita (2018) Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 338:30-42

Showing the most recent 10 out of 163 publications