Exposure Science Core ABSTRACT The objective of the Texas A&M Superfund Research Center is to explore and develop descriptive models and tools that can predict the possible hazardous outcomes of chemical exposure during environmental emergencies and to produce powerful solutions which can mitigate the negative effects on human health. The ultimate goal of the Center is to contribute to decision-making capabilities for planning and control in emergency environmental contamination events. Exposure science is evolving rapidly in parallel with novel methods for hazard identification with a focus on solving the challenges of rapid detection of potentially harmful chemicals at low but biologically relevant concentrations. The overall goal of the Exposure Science Core is to address the needs of the Texas A&M University (TAMU) Superfund Research Center for novel analytical approaches in both exposure science and hazard identification under conditions of an environmental emergency contamination event. The Core is a partnership between Drs. Justin Teeguarden and Erin Baker at Pacific Northwest National Laboratory and Dr. Terry Wade at Texas A&M University. The Core will address this objective and enable exposure characterization of complex environmental exposures and mixtures by coordinating exposure science activities across the Center and (i) developing novel sample processing and analysis methods, (ii) translating these advances into practice for environmental health protection, and (iii) providing essential analytical support to the projects in the Center and beyond. The Exposure Science Core will coordinate exposure assessments across the Center by working very closely with Project 1 to characterize the real-world mixtures that will be used in other Projects and Cores, as well as it will ensure consistency and relevance of these estimates for use in toxicity testing (Projects 3 and 4), decision making (Decision Science Core), and effectiveness of hazard reduction (Project 2) and communication (Research Translation Core, Community Engagement Core). A suite of sensitive quantitative targeted analyses will be used to identify and quantify target contaminants of human health concern in the Galveston Bay/Houston Ship Channel. Building on these conventional analyses, global non-targeted analysis of samples using a RapidFire? Solid Phase Extraction-Ion Mobility-Mass Spectrometry (SPE-IMS-MS) will be used to characterize previously unknown chemical exposures and environmentally relevant mixtures for toxicity testing. A novel computational chemical structure and identification pipeline developed by our team will be used to make new libraries and make provisional chemical identifications. These transformative scientific aims will advance the goals of all four projects and the overall Center goal of developing rapid, effective tools for disaster response related to human exposures.

Public Health Relevance

Exposure Science Core NARRATIVE The Exposure Science Core helps the Center to determine the nature and extent of exposure to chemicals following a natural disaster. The exposure data is used by Center Projects and Cores to determine the overall impacts exposure to these chemical. Exposure Science Core scientists will use sophisticated instruments to identify known chemicals of interest and previously unknown chemical exposures in environmental samples. From information on the concentration of these chemicals, human exposure levels will be calculated and used by other projects to determine their potential health effects and how best to remove the chemicals from the environment.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Texas A&M University
College Station
United States
Zip Code
Chiu, Weihsueh A; Rusyn, Ivan (2018) Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities. Mamm Genome 29:182-189
Tölgyesi, Ádám; Giri, Anupam; Barta, Eniko et al. (2018) Determination of Thyreostats in Urine Using Supported Liquid Extraction and Mixed-Mode Cation-Exchange Solid-Phase Extraction: Screening and Confirmatory Methods. J Chromatogr Sci 56:858-866
Shapiro, Andrew J; Antoni, Sébastien; Guyton, Kathryn Z et al. (2018) Software Tools to Facilitate Systematic Review Used for Cancer Hazard Identification. Environ Health Perspect 126:104501
Kim, Jun-Hyun; Li, Wei; Newman, Galen et al. (2018) The Influence of Urban Landscape Spatial Patterns on Single-Family Property Values. Environ Plan B Urban Anal City Sci 45:26-43
Klaren, William D; Rusyn, Ivan (2018) High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts. Assay Drug Dev Technol 16:333-342
Nicora, Carrie D; Burnum-Johnson, Kristin E; Nakayasu, Ernesto S et al. (2018) The MPLEx Protocol for Multi-omic Analyses of Soil Samples. J Vis Exp :
Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T et al. (2018) Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. ALTEX 35:51-64
Onel, Melis; Beykal, Burcu; Wang, Meichen et al. (2018) Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques. ESCAPE 43:421-426
Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A et al. (2018) Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 39:614-622
Li, Gen; Shabalin, Andrey A; Rusyn, Ivan et al. (2018) An empirical Bayes approach for multiple tissue eQTL analysis. Biostatistics 19:391-406

Showing the most recent 10 out of 56 publications