Project 3 is one of two biomedical projects proposed for new URI-led Center ? Sources, Transport, Exposure and Effects of PFASs (STEEP) ? that is being created to aid the Superfund Research Program (SRP) in addressing the emerging problem of poly- and perfluorinated alkyl substances (PFASs) contamination. PFASs are considered emerging environmental pollutants, notably found at high concentrations at sites contaminated by aqueous fire fighting foams, such as Cape Cod. Human exposure to PFASs has been linked to immunotoxicity, cancer, as well as metabolic and dyslipidemia. Specific to metabolic disorders, PFASs are known to highly partition to the liver and links have been established between PFAS serum levels, specifically perfluorooctanic acid (PFOA) and perfluorosulfonic acid (PFOS), and liver injury. While insightful, these two common PFASs represent only a fraction of PFASs that exist within the contaminated sites and have been detected in humans (for example by Grandjean, STEEP Project 2; and Sunderland, STEEP Project 1). Understanding the mechanisms driving the biological response to PFASs are still emerging. The goal of this work is to (i) address whether environmental exposure to PFASs contributes an additional increase risk for obesity-induced fatty liver disease and metabolic disorders, and (ii) identify the physicochemical and partitioning behavior of PFASs that contribute to bioaccumulation. The overarching hypotheses are (1) that PFAS exposure will increase diet-induced hepatic steatosis and inflammation, which is potentially via increased adiposity and altered adipokine secretion, and (2) that the biological responses (e.g. liver weight) and biomarkers (e.g. oxidative stress gene expression) can be correlated with the protein, lipid, and/or membrane partitioning behavior of PFASs. These hypotheses will be tested by (Aim 1) evaluating the potential of PFASs to impact hepatic lipid accumulation, adipogenesis and adipokine secretion, (Aim 2) evaluating postnatal and adult PFAS exposure as an additional risk factor for obesity-induced hepatic steatosis and adipocyte dysfunction, and (Aim 3) determining the physicochemical properties of PFASs and their partitioning behavior to fat and in protein phases. Furthermore, through this project significant gaps in ATSDR guidance related to PFASs will be addressed pertaining to (i) outcomes with early in life PFAS exposure, (ii) mechanistic biomarkers for PFAS exposure in addition to liver endpoints, (iii) risk factors common to the United States population that might impact response to PFAS exposure (i.e. diet; obesity), and (iv) accurate measurements of physicochemical properties that are needed to predict bioaccumulation and toxicity.
Perfluoroalkyl substances (PFASs) are emerging environmental pollutants, notably found at high concentrations at sites contaminated by aqueous fire fighting foams, such as Cape Cod. Human exposure to PFASs has been linked to immunotoxicity, cancer, as well as metabolic and dyslipidemia. This project will investigate metabolic abnormalities caused by PFASs in rodent models and determine the physicochemical and partitioning properties that attribute to these abnormalities and are needed for predictive bioaccumulation models.
Showing the most recent 10 out of 12 publications