Alcoholism is characterized by a loss of control over drinking and increased risk of adverse events including traumatic injury, organ damage and loss of normal social interactions. The neural substrates that underlie the transition from controlled social drinking to uncontrolled alcohol abuse are not fully understood, but they likely involve disruption of brain areas responsible for assessing risk versus reward and in inhibiting maladaptive behaviors. During the current funding cycle, we have focused on defining the actions of acute and chronic ethanol on neurons within the orbitofrontal cortex (OFC), a part of the prefrontal cortex that is critical for choice and decision-making. Results from these studies show that acute ethanol inhibits OFC neuron activity via effects on processes that regulate intrinsic excitability and synaptic glutamatergic transmission. Further, chronic ethanol exposure disrupts OFC-dependent behaviors and results in marked enhancement of OFC excitability and glutamate synaptic plasticity, which may contribute to escalation in drinking associated with ethanol dependence. In this continued Center Project, we propose three major aims designed to expand on our findings by addressing the selectivity of these changes with respect to connections between OFC neurons and brain areas involved in goal-directed and habit-based behaviors. These studies will use our well-characterized mouse model of chronic intermittent ethanol (CIE) exposure and will: (1) use retrograde labeling, slice electrophysiology and optogenetic stimulation to interrogate the input and output function of OFC neurons projecting to areas involved in reward, action and habit (e.g., ventral tegmental area and dorsal and ventral striatum). Alterations in dendritic complexity and spine morphology of OFC neurons that project to these areas will be examined using a novel AAV/Rabies transynaptic labeling technique and Cre-dependent lines (e.g., TH- Cre; D1-Cre; D2-Cre) that provide synapse specific control of connectivity; (2) test how CIE treatment alters the intrinsic excitability of OFC neurons and alters the ability of local (glycine) and long-distance (monoamines) modulators to regulate OFC neuron excitability and synaptic function. These studies will also use retrograde labeling and slice electrophysiology to identify projection-specific changes in the modulation of neuronal function of OFC neurons in control and CIE exposed animals; and (3) test how controlling OFC output via excitotoxic lesions and inhibitory and excitatory DREADDs impacts drinking before and following repeated cycles of CIE exposure. Results from these studies will yield important new insights into the role that OFC neurons play in the escalation of drinking observed during the development of ethanol dependence.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Specialized Center (P50)
Project #
5P50AA010761-22
Application #
9198862
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
22
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Hanlon, Colleen A; Dowdle, Logan T; Henderson, J Scott (2018) Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 70:661-683
Hanlon, Colleen A; Dowdle, Logan T; Gibson, Nicole B et al. (2018) Cortical substrates of cue-reactivity in multiple substance dependent populations: transdiagnostic relevance of the medial prefrontal cortex. Transl Psychiatry 8:186
Gioia, Dominic A; Xu, Minfu; Wayman, Wesley N et al. (2018) Effects of drugs of abuse on channelrhodopsin-2 function. Neuropharmacology 135:316-327
Anton, Raymond F; Latham, Patricia K; Voronin, Konstantin E et al. (2018) Nicotine-Use/Smoking Is Associated with the Efficacy of Naltrexone in the Treatment of Alcohol Dependence. Alcohol Clin Exp Res 42:751-760
Anderson, Ethan M; Larson, Erin B; Guzman, Daniel et al. (2018) Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self-Administration, Stress-Induced Reinstatement, and Anxiety. J Neurosci 38:803-813
Osterndorff-Kahanek, Elizabeth A; Tiwari, Gayatri R; Lopez, Marcelo F et al. (2018) Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 13:e0190841
Stewart, Scott H; Reuben, Adrian; Anton, Raymond F (2018) Reply: Carbohydrate Deficient Transferrin in Patients with Cirrhosis: A Tale of Bridges. Alcohol Alcohol 53:351-352
Kearney-Ramos, Tonisha E; Lench, Daniel H; Hoffman, Michaela et al. (2018) Gray and white matter integrity influence TMS signal propagation: a multimodal evaluation in cocaine-dependent individuals. Sci Rep 8:3253
Haun, Harold L; Griffin, William C; Lopez, Marcelo F et al. (2018) Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 140:35-42
Schacht, Joseph P; Voronin, Konstantin E; Randall, Patrick K et al. (2018) Dopaminergic Genetic Variation Influences Aripiprazole Effects on Alcohol Self-Administration and the Neural Response to Alcohol Cues in a Randomized Trial. Neuropsychopharmacology 43:1247-1256

Showing the most recent 10 out of 209 publications