The Charleston Alcohol Research Center (ARC) continues to focus on treatment and treatment implications as an overarching theme. The ARC maintains its long-standing tradition of embracing multidisciplinary and translational research approaches, integrating both basic research and clinical investigations all centered on this common theme. The ARC also continues its tradition of teaming junior faculty with more experienced investigators, capitalizing on new talent and bringing sophisticated cutting-edge technologies and research approaches that enhance research efforts in addressing the Center?s overall scientific goals. The ARC is comprised of five research projects and three cores. The Administrative Core provides the leadership and infrastructure to facilitate the overall scientific and educational mission of the Center as a whole. The Shared Resource Core provides vital scientific services needed by Center researchers to facilitate integration, maximize resources, and increase productivity. The Pilot Core attracts new investigators and new ideas to the Center, thereby broadening and augmenting its research and training activities. In this renewal application, proposed preclinical and clinical research projects all center on a common research focus ? neuroadaptations in cortical processes that underlie transition to excessive drinking. Three basic research projects will use sophisticated circuitry mapping, cellular/molecular biology techniques, and behavioral procedures to examine how chronic alcohol exposure alters functional activity of cortical sub-regions and their projections, and how such adaptations in cortical-subcortical neurocircuitry mediate excessive drinking, which may be characterized as inflexible, compulsive/habit-like drinking. Two clinical research projects will employ sophisticated neuroimaging techniques to focus on similar cortical areas and projections in evaluating the ability of different treatment modalities (pharmacological and non-pharmacological) to alter the circuitry and reduce alcohol cue-induced brain activation, craving, and drinking. The Charleston ARC is poised to continue its national leadership role and demonstrated success in: (a) fostering multidisciplinary and translational state-of-the-art research efforts that are thematically-focused on the topic of treatment and treatment implications; (b) attracting new (especially early-stage) investigators into the Center, thereby invigorating its research efforts; and (c) providing a stimulating environment that enriches training opportunities and professional development for the next generation of researchers in the alcohol field.

Public Health Relevance

! The Charleston Alcohol Research Center is dedicated to addressing one of the nation?s foremost public health concerns: alcohol use disorder. The Center embraces a multidisciplinary, translational research approach involving both clinical and preclinical researchers who are investigating why some individuals transition from social drinking that can be controlled to more excessive, uncontrolled drinking. Understanding brain mechanisms involved in this transition to excessive, compulsive-like alcohol consumption is crucial for developing new and more effective therapeutic strategies for arresting the progression to alcohol addiction, and preventing negative consequences associated with alcohol use disorder.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Program Officer
Egli, Mark
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Schools of Medicine
United States
Zip Code
Hanlon, Colleen A; Dowdle, Logan T; Henderson, J Scott (2018) Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 70:661-683
Hanlon, Colleen A; Dowdle, Logan T; Gibson, Nicole B et al. (2018) Cortical substrates of cue-reactivity in multiple substance dependent populations: transdiagnostic relevance of the medial prefrontal cortex. Transl Psychiatry 8:186
Gioia, Dominic A; Xu, Minfu; Wayman, Wesley N et al. (2018) Effects of drugs of abuse on channelrhodopsin-2 function. Neuropharmacology 135:316-327
Anton, Raymond F; Latham, Patricia K; Voronin, Konstantin E et al. (2018) Nicotine-Use/Smoking Is Associated with the Efficacy of Naltrexone in the Treatment of Alcohol Dependence. Alcohol Clin Exp Res 42:751-760
Anderson, Ethan M; Larson, Erin B; Guzman, Daniel et al. (2018) Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self-Administration, Stress-Induced Reinstatement, and Anxiety. J Neurosci 38:803-813
Osterndorff-Kahanek, Elizabeth A; Tiwari, Gayatri R; Lopez, Marcelo F et al. (2018) Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 13:e0190841
Stewart, Scott H; Reuben, Adrian; Anton, Raymond F (2018) Reply: Carbohydrate Deficient Transferrin in Patients with Cirrhosis: A Tale of Bridges. Alcohol Alcohol 53:351-352
Kearney-Ramos, Tonisha E; Lench, Daniel H; Hoffman, Michaela et al. (2018) Gray and white matter integrity influence TMS signal propagation: a multimodal evaluation in cocaine-dependent individuals. Sci Rep 8:3253
Haun, Harold L; Griffin, William C; Lopez, Marcelo F et al. (2018) Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 140:35-42
Schacht, Joseph P; Voronin, Konstantin E; Randall, Patrick K et al. (2018) Dopaminergic Genetic Variation Influences Aripiprazole Effects on Alcohol Self-Administration and the Neural Response to Alcohol Cues in a Randomized Trial. Neuropsychopharmacology 43:1247-1256

Showing the most recent 10 out of 209 publications